Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' gęstość' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Nowo odkryta planeta wielkości Neptuna ma gęstość większą od stali. Masa TOI-1853b jest niemal dwukrotnie większa niż planet jej rozmiarów. To zaś oznacza, że musi składać się ze znacznie większego odsetka skał, niż można by się spodziewać. Dlatego naukowcy z Włoch i Wielkiej Brytanii uważają, że planeta powstała w wyniku zderzenia innych planet. Jak czytamy na łamach Nature, zderzenie odrzuciło lżejszy materiał, jak woda i atmosfera, pozostawiając planetę złożoną w olbrzymiej mierze ze skał. W naszym Układzie Słonecznym mamy dowody na potężne kolizje między planetami. Dowodem takim jest istnienie Księżyca. Dysponujemy też dowodami na zderzenia pomiędzy mniejszymi egzoplanetami. Wiemy, że egzoplanety są niezwykle zróżnicowane. Wiele z nich nie ma odpowiedników w Układzie Słonecznym, ale często te skaliste ciała niebieskie mają podobną masę i skład do naszych lodowych olbrzymów, Neptuna i Urana, mówi doktor Phil Carter z University of Bristol. Naukowcy przeprowadzili symulacje komputerowe, które miały pokazać, w jaki sposób mogła powstać planeta taka jak TOI-1853b. Stwierdzili, że planety, które dały jej początek, prawdopodobnie były bogate w wodę. Musiały zderzyć się z prędkością większą niż 75 km/s, by powstała planeta o takich parametrach jak TOI-1853b, dodaje Carter. Odkrycie potwierdza rolę zderzeń w powstawaniu planet. Zdobyta dzięki niemu wiedza pozwala łączyć to, co wiemy o ewolucji Układu Słonecznego z ewolucją innych systemów planetarnych. To niezwykle zaskakująca planeta. Zwykle planety zawierające tak dużo skał powinny tworzyć gazowe olbrzymy, jak Jowisz, którego gęstość jest podobna do gęstości wody. Tymczasem TOI-1853b ma rozmiary Neptuna, ale jest gęstsza niż stal. Wykazaliśmy, że taka planeta może powstać, jeśli doszło do wysokoenergetycznych zderzeń innych planet, podsumowuje Jingyao Dou z Bristolu. Teraz badacze chcą jeszcze dokładniej przyjrzeć się TOI-1853b, spróbować dokładnie określić jej skład i poszukać ewentualnych resztek atmosfery. « powrót do artykułu
  2. Dzięki sile odśrodkowej i wykorzystaniu cieczy o różnych gęstościach można opracować samoorganizujące się fabryki chemiczne. Zaproponowany przez Polaków pomysł na wirujące reaktory jest nie tylko sprytny, ale i piękny. Badania trafiły na okładkę prestiżowego Nature. Polsko-koreański zespół pokazał, jak przeprowadzać całe serie skomplikowanych reakcji chemicznych naraz - nie uciekając się do skomplikowanych systemów urządzeń, a korzystając z... siły odśrodkowej. Pierwszymi autorami publikacji są dr Olgierd Cybulski (Uniwersytet UNIST w Korei Płd.) i dr Mirosław Dygas (UNIST i Instytut Chemii Organicznej PAN). Pokazujemy, jak przygotować samoorganizujące się fabryki chemiczne - opisuje w rozmowie z PAP autor korespondencyjny publikacji prof. Bartosz Grzybowski (UNIST i IChO PAN). I dodaje, że ma już pomysł, jak wykorzystać taki wirujący reaktor chemiczny choćby do... odzyskiwania litu z cieczy w bateriach. To, że ciecze o różnych gęstościach mogą tworzyć niemieszające się warstwy, można zaobserwować nawet podczas obiadu - wpatrując się w oka na rosole. Tłuszcz z zupy unosi się na wierzchu, ma bowiem mniejszą gęstość niż wodnista część zupy. W warunkach domowych można zrobić i bardziej złożone doświadczenie: do jednego naczynia powoli wlewa się po kolei wiele cieczy o różnych gęstościach. Zacząć można od najgęstszego miodu, przez syrop klonowy, płyn do naczyń, wodę, olej roślinny aż po najrzadszą naftę. Jeśli zrobi się to odpowiednio powoli, w tej (niejadalnej) tzw. kolumnie gęstości można zobaczyć oddzielone od siebie, niewymieszane różnokolorowe warstwy. Gdyby jednak teraz taką kolumną gęstości zacząć bardzo, bardzo szybko wirować - obracając naczynie wokół pionowej osi (tak jak na kole garncarskim, tylko że znacznie szybciej - np. 2,6 tys. obrotów na minutę), okaże się, że kolejne warstwy ułożą się w koncentryczne pierścienie. Najlżejsze ciecze będą miały mniejszą średnicę i będą ułożone najbliżej centrum tej wirówki, a najgęstsze ułożą się w duże pierścienie bliżej jej obrzeży. Wirowanie jest tu o tyle ważnym czynnikiem, że siła odśrodkowa zaczyna dominować nad napięciem powierzchniowym cieczy. Można więc uzyskać bardzo cieniutkie warstewki cieczy - nawet rzędu 0,15 mm, a może i jeszcze cieńsze - bez ryzyka, że się ze sobą wymieszają. Jeśli odpowiednio dobierze się gęstość cieczy, można - co wykazali naukowcy - uzyskać w wirówce nawet 20 wirujących wokół wspólnej osi kolorowych pierścieni. Wirująca kolumna gęstości to niezwykle estetyczny eksperyment fizyczny. Dodatkowo prof. Bartosz Grzybowski z zespołem pokazał, jak bardzo skorzystać mogą z niego chemicy. Wirujące ciecze o różnych gęstościach można bowiem przygotować tak, aby w każdej z nich znajdował się inny odczynnik potrzebny do reakcji chemicznej. Załóżmy, że do samego centrum wirówki wlewamy jakiś związek chemiczny. On się rozchodzi po wirówce, zaczynając swoją dyfuzję od kontaktu z najrzadszą, najbardziej wewnętrzną warstwą. Tam jednak dochodzi do reakcji chemicznej i powstaje jakiś nowy związek chemiczny. On również zaczyna dyfuzję i dociera do kolejnej, gęstszej warstwy, gdzie dochodzi do kolejnej reakcji chemicznej. Powstaje kolejny produkt. I tak dalej, aż z produktu wyjściowego dojdziemy do produktu finalnego. Dzięki wirującej kolumnie gęstości wiele reakcji chemicznych zachodzi więc samorzutnie jedna po drugiej. Nie trzeba serii doświadczeń, wielu naczynek, mieszalników ani rurek. Ponieważ pierścienie są bardzo cienkie, a powierzchnia ich kontaktu jest spora, to dyfuzja związków między kolejnymi z nich zachodzi w stosunkowo krótkim czasie (o wiele krótszym, niż gdyby kolumna się nie poruszała). Prof. Grzybowski zaznacza, że takie samoorganizujące się fabryki chemiczne mogą znaleźć zastosowanie przemysłowe - choćby do oddzielania składników z mieszanin. W publikacji w Nature badacze pokazali, jak w takim wirującym doświadczeniu odzyskiwać aminokwasy (składniki białek) z brzeczki fermentacyjnej. Podobnie można byłoby to wykonać w przypadku odzyskiwania litu z mieszaniny po bateriach. To byłby biznes. A przecież na to na razie nie ma dobrych metod - uważa chemik. Prof. Grzybowski osiągnął w ostatnich kilku dniach to, o czym większość polskich naukowców może tylko pomarzyć. Jego artykuł o wirujących reaktorach trafił teraz na okładkę Nature. A tydzień temu artykuł jego zespołu na zupełnie inny temat - o chemicznym "drzewie początków życia" - ukazał się w innym najbardziej prestiżowym czasopiśmie naukowym świata - Science (tym samym badacz ma już na koncie 13 publikacji w tych prestiżowych czasopismach). Naukowiec jednak daje do zrozumienia, że ma jeszcze coś w zanadrzu. Zapowiada, że wkrótce w którymś z tych ważnych czasopism ma się ukazać kolejny jego artykuł, na zupełnie inny temat. I ten będzie najważniejszy w mojej dotychczasowej karierze - uśmiecha się profesor. Badania opublikowane w Nature wykonane były w dużej części w Korei i częściowo w IChO PAN. , a oprócz prof. Grzybowskiego i dr. Cybulskiego i dr. Dygasa byli w nie zaangażowani także inni polscy naukowcy (Barbara Mikulak-Klucznik, dr Marta Siek i dr Tomasz Klucznik). « powrót do artykułu
×
×
  • Dodaj nową pozycję...