Znajdź zawartość
Wyświetlanie wyników dla tagów ' enzymy' .
Znaleziono 3 wyniki
-
Filtr do pralek rozkłada mikrowłókna tworzyw sztucznych
KopalniaWiedzy.pl dodał temat w dziale Technologia
Filtr stworzony na Uniwersytecie w Exeter może rozłożyć plastikowe mikrowłókna, które trafiają do wody podczas prania ubrań. Inteligentny filtr je wychwytuje i za pomocą zestawu enzymów rozkłada do 2 produktów: kwasu tereftalowego i glikolu etylenowego. W wysokich stężeniach związki te mogą być toksyczne, ale ilość wody wykorzystywana w czasie prania wystarczy do rozcieńczenia ich do bezpiecznego poziomu. Filtr opracowało 10 studentów z różnych kierunków. By rozpocząć produkcję filtra i jego montowanie w urządzeniach, grupa PETexe współpracuje z partnerami przemysłowymi, np. firmą Miele. Syntetyczne włókna, takie jak poliester czy nylon, stanowią sporą część materiałów ubraniowych. Mikrowłókna uwalnianie w czasie każdego prania spływają do oceanu. Przez to znajdują się w wodzie z kranu, jedzeniu, które spożywamy, a nawet w powietrzu, którym oddychamy. Nasz inteligentny filtr, zaprojektowany tak, by pasował do odpływu pralek, wychwytuje ok. 75% tych włókien i je rozkłada - wyjaśnia Rachael Quintin-Baxendale. Quintin-Baxendale dodaje, że rozłożenie w ten sposób większych kawałków plastiku zajęłoby dużo czasu, ale mikrowłókna są tak drobne, że mamy nadzieję rozłożyć je w pełni pomiędzy praniami. Obecnie eksperymentujemy z różnymi stężeniami enzymów, aby znaleźć optymalne warunki do tego procesu. Lydia Pike opowiada, że polimerem najczęściej wykorzystywanym w ubraniach jest poli(tereftalan etylenu), PET. Podstawowym enzymem stosowanym przez nas do rozłożenia go jest PETaza. Oprócz tego studenci pracują nad aplikacją, która pozwoli ludziom monitorować proces i zarządzać filtrem. Dzięki niej możliwe też będzie udostępnianie danych; członkowie PETexe wykorzystają je do poprawienia wydajności enzymów. Choć na obecnym etapie skupiamy się na pralkach, możliwe, że działające na podobnych zasadach filtry znajdą zastosowanie w fabrykach materiałów i w stacjach uzdatniania wody. Projekt jest wspierany i sponsorowany przez różne podmioty, w tym Google'a. Filtr uzyskiwany za pomocą drukarki 3D został stworzony na listopadowy iGEM (International Genetically Engineered Machine), czyli konkurs z dziedziny biologii syntetycznej organizowany przez MIT. PETexe ma jednak nadzieję, że pomysł uda się dalej rozwinąć... « powrót do artykułu- 5 odpowiedzi
-
Naukowcy z Uniwersytetu New Hampshire stworzyli hydrożel, z którego w niedalekiej przyszłości mogą powstać soczewki kontaktowe do leczenia rozmiękania rogówki (keratomalacji), ważnej przyczyny utraty wzroku na całym świecie. Proces prowadzący do zwyrodnienia i rozpływu tkanki rogówki jest wynikiem działania enzymów; występuje w różnych chorobach autoimmunologicznych, np. toczniu czy reumatoidalnym zapaleniu stawów, a także po oparzeniach chemicznych i zabiegach chirurgicznych. Rogówka rozmięka pod wpływem niekontrolowanej produkcji pewnych metaloproteinaz macierzy pozakomórkowej (MMP) przez komórki odpornościowe pacjenta. Enzymy te są zależne od cynku (atom cynku pełni rolę katalityczną i strukturalną w ich cząsteczce), dlatego Amerykanie opracowali hydrożel, który deaktywuje je, usuwając kationy Zn2+. Większość dzisiejszych inhibitorów metaloproteinaz do leczenia keratomalacji działa, wiążąc się z kationami Zn2+ MMP. Wstrzyknięte podróżują one jednak krwiobiegiem przez cały organizm i mogą wywoływać poważne skutki uboczne, działając także w innych tkankach. Nasz hydrożel [...] ma być zlokalizowany dokładnie w oku i deaktywować MMP, eliminując kationy cynku z rogówki. Gdyby cokolwiek się działo, wykonaną z hydrożelu soczewkę kontaktową będzie można po prostu wyjąć - opowiada prof. Kyung Jae Jeong z UNH. Naukowcy z UNH oraz Jung-Jae Lee z Uniwersytetu Kolorado w Denver opisali na łamach ACS Biomaterials Science & Engineering, jak hydrożel deaktywuje MMP-1, MMP-2 i MMP-9, które pełnią ważną rolę w rozmiękaniu rogówki. Badania prowadzono w warunkach in vitro oraz ex vivo, na wyekstrahowanej tkance rogówki. Wszystko wskazuje na to, że hydrożel może być użyteczną opcją terapeutyczną w leczeniu keratomalacji. Zespół złożył już wniosek patentowy. « powrót do artykułu
-
- rozmiękanie rogówki
- keratomalacja
- (i 6 więcej)
-
Naukowcy z Wiedeńskiego Uniwersytetu Technologicznego opracowali metodę pozyskiwania erytrytu; wykorzystują do tego słomę pszeniczną oraz grzyby Trichoderma reesei. Erytryt, słodzik, który naturalnie występuje w wodorostach i porostach, jest używany w Azji, zyskuje też coraz większą popularność w USA i Europie. Autorzy artykułu z pisma AMB Express zaznaczają, że erytryt ma co najmniej kilka plusów. Po pierwsze, jest niskokaloryczny i nie prowadzi do tycia. Po drugie, nie wywołuje próchnicy ani nie wpływa na poziom cukru we krwi. Po trzecie, w odróżnieniu od innych słodzików, nie działa przeczyszczająco. Dotąd erytryt uzyskiwano za pomocą pewnych rodzajów drożdży z wysoce skoncentrowanej melasy. Austriakom udało się do tego wykorzystać zwykłą słomę i grzyby strzępkowe. Eksperymenty zakończyły się dużym sukcesem, a teraz procedura będzie optymalizowana pod kątem przemysłu. Gdy słomę potnie się na drobne kawałki, rozpuszczalniki rozkładają ligninę ścian komórkowych, a ksylan i celuloza są poddawane dalszej obróbce. Zwykle słomę trzeba potraktować drogimi enzymami, które rozłożą ją do cukru. W stężonej melasie pod wpływem skrajnego stresu osmotycznego specjalne szczepy drożdży przekształcają cukier w erytryt - wyjaśnia prof. Robert Mach. Enzymy celulolityczne można jednak pozyskać z grzybów strzępkowych (T. reesei są uznawane za najskuteczniejsze w tej dziedzinie; syntetyzują dwie celobiohydrolazy, osiem endoglukanaz i siedem beta-glukozydaz). Podczas studium naukowcy zmodyfikowali grzyby genetycznie. Zwykle procesy pozyskiwania enzymów z hodowli oraz ich chemicznego oczyszczania sprawiają sporo kłopotów, teraz jednak można aplikować T. reesei bezpośrednio na słomę, rezygnując w dodatku z etapu pośredniego z melasą. Wiedzieliśmy, że T. reesei są zasadniczo zdolne do wytwarzania erytrytu, ale zazwyczaj w małych ilościach. Zmieniając je genetycznie, udało nam się pobudzić produkcję enzymu, który umożliwia wytwarzanie substancji słodzącej na dużą skalę. « powrót do artykułu