Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' edytowanie DNA'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 1 result

  1. Dzięki enzymowi bakteryjnemu naukowcy byli w stanie osiągnąć coś, czego nie dawała nawet technika CRISPR-Cas9. Udało im się przeprowadzić precyzyjne zmiany w genomie mitochondrialnym (mtDNA). Nowatorska metoda opierająca się na nowoczesnej precyzyjnej technice o nazwie base editing, pozwoli na opracowanie nowych technik badania, a może i leczenia, chorób powodowanych przez mutacje w genomie mitochondriów. Tego typu schorzenia są często przekazywane z matki na potomstwo i negatywnie wpływają na zdolność komórki do wytwarzania energii. Mimo, że w mtDNA znajduje się niewiele genów w porównaniu z DNA jądra komórkowego, to mutacje obecne w mtDNA mają silny wpływ na układ nerwowy i mięśniowy, w tym na mięsień sercowy. Mogą być śmiertelnym zagrożeniem dla osób, które je odziedziczyły. Dotychczas jednak trudno było badać te choroby, gdyż brakowało sposobu na uzyskanie zwierzęcych modeli mutacji w mtDNA. Dzięki nowej technice naukowcy będą mogli takie modele tworzyć. Możliwość modyfikowania mitochondrialnego DNA pozwoli nam zadać pytania, jakich wcześniej zadawać nie mogliśmy, mówi Carlos Moraes, genetyk z University of Miami. Technika CRISPR-Cas9 wykorzystuje nić RNA do nakierowania enzymu Cas9 na ten region DNA, który naukowcy chcą zmienić. Technika dobrze działa na DNA zawarte w jądrze komórkowym. Jednak nie istnieje sposób na wprowadzenie nici RNA do otoczonego błonami mitochondrium. W 2018 roku biochemik David Liu z Broad Institute założonego prze MIT i Uniwersytet Harvarda otrzymał e-mail od mikrobiologa Josepha Mougousa z University of Washington. Mougous informował go o odkryciu przez jego zespół dziwnego enzymu. Toksyna wytwarzana przez bakterię Burkholderia cenocepacia, gdy weszła w kontakt z zasadą C (cytozyną) w DNA doprowadzała do jej zamiany w zasadę U (uracyl). Jako że U, które rzadko jest spotykane w DNA, zachowuje się jak T, enzymy replikujące DNA komórki kopiują ją na T (tyminę) i w ten sposób w sekwencji genetycznej C zostaje zmienione na T. Co prawda Liu pracował już z działającym podobnie enzymem, jednak oddziaływał on na pojedynczą nić DNA. Dlatego też Liu musiał w swojej pracy wykorzystywać enzym Cas9 do uzyskania pojedynczych nici DNA. Jako, że musiał przy tym korzystać z nici RNA do kierowania Cas9, nie mógł użyć tej techniki na mtDNA. Okazało się jednak, że enzym odkryty przez zespół Mougousa, nazwany DddA, działa na podwójną helisę DNA. Nie trzeba więc używać Cas9 do jej rozdzielenia. Jak stwierdzili Liu i Mougous, ta jego cecha może spowodować, że DddA pozwoli na sięgnięcie do genomu mitochondrialnego. Osiągniecie jednak tego celu nie było proste. Pożądana cecha DddA, czyli możliwość modyfikacji podwójnej helisy DNA, może być też śmiertelnym zagrożeniem. Enzym może bowiem zmodyfikować każdą napotkaną zasadę C. Aby temu zapobiec, naukowy robili enzym na dwie części, które mogą zmienić DNA tylko wtedy, gdy połączą się w odpowiedni sposób. A żeby kontrolować, który konkretnie fragment DNA ma zostać zmodyfikowany, naukowcy spowodowali, że każda z części DddA może łączyć się z konkretnym miejscem w genomie. Nowa technika jeszcze przez długi czas nie będzie wykorzystana w praktyce klinicznej, mówi Liu. Wstępne jej testy wypadły pozytywnie, jednak koniecznych jest wiele badań na różnych typach komórek. W przyszłości technika z wykorzystaniem DddA może być jednak świetnym uzupełnieniem istniejących metod. Wspomniany już tutaj Moraes i inni pracują nad enzymami, które dostają się do mitochondriów i wycinają z DNA zmutowany fragment. Mitochondria często pozbywają się tak uszkodzonego DNA. W efekcie, jak mają nadzieję uczeni, tego typu technika spowoduje, że będzie można pozbyć się z mitochondriów zmutowanego DNA, co może pozwolić na uzyskanie przewagi przez zdrowe kopie mtDNA. Jak jednak zauważa Michal Minczuk z University of Cambridge, technika z wykorzystaniem DddA mozwala na naprawę mtDNA nawet wówczas gdy nie ma wystarczającej liczby kopii zdrowego mtDNA. To niesamowity krok naprzód, mówi uczony. « powrót do artykułu
×
×
  • Create New...