Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' chmury' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 5 wyników

  1. W 2023 roku średnia temperatura była niemal o 1,5 stopnia wyższa od średniej sprzed rewolucji przemysłowej. Jednak naukowcy próbujący wyjaśnić ten wzrost, mają kłopoty z określeniem jego przyczyn. Gdy bowiem biorą pod uwagę emisję gazów cieplarnianych, zjawisko El Niño czy wpływ erupcji wulkanicznych, wciąż niewyjaśnione pozostaje około 0,2 stopnia wzrostu. Uczeni z Instytutu Badań Polarnych i Morskich im. Alfreda Wegenera (AWI) zaproponowali na łamach Science wyjaśnienie tego zjawiska. Według nich te brakujące 0,2 stopnia to skutek zmniejszającego się albedo – zdolności do odbijania światła – Ziemi. Uczeni z AWI, we współpracy ze specjalistami od modelowania klimatu z European Centre for Medium-Range Weather Forecasts (ECMWF), przeanalizowali dane satelitarne z NASA oraz ponownie przyjrzeli się danym ECMWF. Niektóre z nich pochodziły nawet z roku 1940. Na ich podstawie sprawdzili jak przez ostatnie dziesięciolecia zmieniał się globalny budżet energetyczny oraz pokrywa chmur na różnych wysokościach. Zarówno w danych NASA, jak i ECMWF, rok 2023 wyróżniał się jako ten o najniższym albedo planetarnym. Od lat obserwujemy niewielki spadek albedo. Ale dane pokazują, że w 2023 roku albedo było najniższe od co najmniej roku 1940, mówi doktor Thomas Rackow. Zmniejszanie się albedo Ziemi naukowcy obserwują od lat 70. Częściowo za zjawisko to odpowiadało zmniejszanie się pokrywy lodowej oraz ilości lodu pływającego w Arktyce. Mniej śniegu i lodu oznacza, że mniej promieniowania słonecznego jest odbijane przez Ziemię. Od 2016 roku efekt ten został wzmocniony przez zmniejszanie się zasięgu lodu pływającego w Antarktyce. Jednak nasze analizy pokazywały, że spadek albedo w regionach polarnych odpowiada jedynie za 15% całkowitego spadku albedo, dodaje doktor Helge Goessling. Albedo zmniejszyło się też jednak w innych regionach planety i gdy naukowcy wprowadzili dane do modeli budżetu energetycznego stwierdzili, że gdyby nie spadek albedo od grudnia 2020, to średni temperatury w roku 2023 byłyby o 0,23 stopnie Celsjusza niższe. Na zmniejszenie albedo wpłynął przede wszystkim zanik nisko położonych chmur z północnych średnich szerokości geograficznych i z tropików. Szczególnie silnie zjawisko to zaznaczyło się na Atlantyku, co wyjaśniałoby, dlaczego był on tak niezwykle gorący. Pokrywa chmur na średnich i dużych wysokościach nie uległa zmianie lub zmieniła się nieznacznie. Chmury na wszystkich wysokościach odbijają światło słoneczne, przyczyniając się do ochłodzenia planety. Jednak te, które znajdują się w wysokich, chłodnych warstwach atmosfery, tworzą rodzaj otuliny, który zapobiega ucieczce w przestrzeń kosmiczną ciepła wypromieniowywanego przez Ziemię. Zatem utrata chmur położonych niżej oznacza, że tracimy część efektu chłodzącego, wpływ ocieplający chmur pozostaje. Rodzi się więc pytanie, dlaczego niżej położone chmury zanikły. Częściowo przyczyną może być mniejsza antropogeniczna emisja aerozoli, szczególnie z powodu narzucenia bardziej restrykcyjnych norm na paliwo używane przez statki. Aerozole z jednej strony biorą udział w tworzeniu się chmur, z drugiej zaś – same odbijają promieniowanie słoneczne. Jednak badacze uważają, że czystsze powietrze to nie wszystko i mamy do czynienia z bardziej niepokojącym zjawiskiem. Ich zdaniem to sama zwiększająca się temperatura powoduje, że na mniejszych wysokościach formuje się mniej chmur. Jeśli zaś znaczna część spadku albedo to – jak pokazują niektóre modele klimatyczne – skutek sprzężenia zwrotnego pomiędzy globalnym ociepleniem a nisko położonymi chmurami, to w przyszłości powinniśmy spodziewać się jeszcze bardziej intensywnego ocieplenia. Średnia temperatura na Ziemi może przekroczyć granicę wzrostu o 1,5 stopnia Celsjusza w porównaniu z epoką przedprzemysłową wcześniej, niż sądziliśmy, dodaje Goessling. « powrót do artykułu
  2. Chmury na Neptunie niemal całkowicie zniknęły, donoszą naukowcy z Keck Observatory na Hawajach. To pierwsza taka sytuacja od niemal 30 lat. Zespół uczonych pracujący pod kierunkiem specjalistów z Uniwersytetu Kalifornijskiego w Berkeley prowadzi od 1994 roku obserwacje pokrywy chmur na Neptunie. Prowadzone badania pokazują, że pokrywa chmur Neptuna jest ściśle powiązana z cyklem słonecznym. To zaskakujące spostrzeżenie zważywszy na fakt, że Neptun jest tak bardzo odległy od naszej gwiazdy, iż otrzymuje 900 razy mniej promieniowania słonecznego niż Ziemia. Badacze zauważyli, że chmury, normalnie powszechne w atmosferze Neptuna, zaczęły zanikać w 2019 roku. Obecnie widać je tylko w okolicach bieguna południowego. Byłem zaskoczony, jak szybko chmury znikają. Ich ilość spadała z miesiąca na miesiąc, mówi profesor Imke de Pater. Nawet teraz, cztery lata później, ilość chmur nie wróciła do normalnego poziomu, dodaje Erandi Chavez z Uniwersytetu Harvarda. To niezwykle ekscytujące i całkowicie niespodziewane, tym bardziej, że w poprzednim okresie zmniejszenia się pokrywy chmur na Neptunie spadek nie był tak dramatyczny, mówi. Chavez i jej zespół przeanalizowali zdjęcia Neptuna wykonane w latach 1994x2022 przez Keck Observatory, Lick Observatory i Teleskop Hubble'a. Dane pokazują związek pomiędzy pokrywą chmur na Neptunie a cyklem słonecznym. Gdy Słońce emituje więcej promieniowania ultrafioletowego, szczególnie z linii widmowej wodoru Lyman-α (121,57 nm), dwa lata później na Neptunie pojawia się więcej chmur. To wskazuje, że pokrywa chmur na Neptunie jest zależna od aktywności Słońca i wspiera teorię mówiącą, że promieniowanie ultrafioletowe emitowane przez Słońce, jeśli jest wystarczająco silne, uruchamia reakcje fotochemiczne prowadzące do pojawiania się chmur Neptuna. Związek pomiędzy cyklem słonecznym a pokrywą chmur na Neptunie obserwowano zatem na podstawie 2,5 cyklu słonecznego. W tym czasie współczynnik odbicia Neptuna osiągnął maksimum w 2002 roku, co wskazuje na maksymalną pokrywę chmur, a minimum przypadło na rok 2007. Neptun ponownie pojaśniał w roku 2015, a w 2020 zaobserwowano najniższy z dotychczasowych współczynników odbicia. Niemal wszystkie chmury zniknęły. Naukowcy zastrzegają, że potrzeba więcej badań, by jednoznacznie potwierdzić związek pomiędzy cyklem słonecznym a chmurami Neptuna. Wiadomo bowiem, że o ile więcej UV może prowadzić do pojawienia się większej ilości chmur i większego zamglenia, jednocześnie może ono powodować, że chmury są ciemniejsze, zatem całkowita jasność planety spadnie. Ponadto burze z głębszych partii atmosfery mogą wpływać na pokrywę chmur, ale nie są powiązane z fotochemicznym powstawaniem chmur. Zjawiska te mogą więc zaburzać związek cyklu słonecznego z pokrywą chmur. Naukowcy chcą też przekonać się, jak długo na Neptunie będzie bezchmurne niebo. To niesamowite, że możemy wykorzystać naziemne teleskopy do badania klimatu planety odległej od nas o 4 miliardy kilometrów. Postęp technologiczny oraz prowadzony przez nas Twilight Observing Program pozwoliły nam na skonstruowanie modelu klimatycznego Neptuna, co jest kluczem do zrozumienia zależności pomiędzy klimatem lodowych olbrzymów a cyklem słonecznym, stwierdza Carlos Alvarez z Keck Observatory. « powrót do artykułu
  3. Weteran badań Marsa, łazik Curiosity, od pewnego czasu wykonuje zdjęcia chmur na Czerwonej Planecie. Niedawno przysłał na Ziemię wyjątkowe obrazy, w tym pierwszą sfotografowaną na Marsie tak wyraźną śreżogę, czyli promienie słoneczne przeświecające przez warstwę chmur. Większość chmur na Marsie znajduje się na wysokości nie większej niż 60 km. Jednak chmury na najnowszych obrazach wydają się być znacznie wyżej, gdzie jest wyjątkowo zimno. Dlatego naukowcy przypuszczają, że tworzy je zamarznięty dwutlenek węgla. Obserwując kiedy, gdzie i na jakich wysokościach formują się marsjańskie chmury, naukowcy mogą dowiedzieć się więcej na temat składu atmosfery Czerwonej Planety, jej temperatury oraz wiejących w niej wiatrów. Przed kilkoma tygodniami łazik sfotografował nawet chmury iryzujące. Iryzacja oznacza, że cząstki znajdujące się w danej części chmury są identycznej wielkości. Patrząc na zmiany koloru, widzimy zmiany wielkości cząstek, a to pokazuje nam ewolucję chmury w czasie, wyjaśnia Mark Lemmon ze Space Science Institute w Boulder. Łazik Curiosity trafił na Marsa w sierpniu 2012 roku. Pracuje w kraterze Gale i dotychczas przebył ponad 29 kilometrów po powierzchni Czerwonej Planety. Bada tam pierwiastki niezbędne do powstania życia, poszukuje śladów procesów biologicznych, przygląda się składowi powierzchni Marsa, prowadzi badania ewolucji atmosfery, obiegu wody i promieniowania na powierzchni planety. To czwarty z pięciu łazików, jakie NASA wysłała na Marsa i, obok Perseverance, jeden z dwóch obecnie działających. « powrót do artykułu
  4. Międzynarodowy zespół naukowy pracujący pod kierunkiem profesor Jane Greaves z Cardiff University poinformował o odkryciu fosforowodoru w chmurach na Wenus. Na Ziemi fosforowodór powstaje w wyniku procesów przemysłowych lub jest wytwarzany przez mikroorganizmy beztlenowe. Naukowcy od dziesięcioleci spekulują, że w wysokich partiach chmur na Wenus mogą znajdować się mikroorganizmy. Byłyby wysoko nad niegościnną powierzchnią planety. Musiałyby jednak przetrwać w środowisku o wysokiej kwasowości. Odkrycie fosforowodoru może wskazywać, że w atmosferze Wenus rzeczywiście istnieje życie. Szczegóły odkrycia opisano w Nature Astronomy. Sensacyjnego odkrycia dokonano za pomocą James Clark Maxwell Telescope (JCMT) na Hawajach. Następnie naukowcy otrzymali dostęp do 45 teleskopów pracujących w ramach ALMA (Atacama Large Milimeter/submilimeter Array). W obu przypadkach Wenus obserwowano w długości fali większej niż 1 mm. To daleko poza zakresem, który wykrywa ludzkie oko. To był eksperyment wykonany z czystej ciekawości. Postanowiliśmy wykorzystać potężną technologię, w którą wyposażony jest JCMT, by wyobrazić sobie możliwości przyszłych instrumentów. Stwierdziłam, że wykluczymy pewne ekstremalne scenariusze, jak np. obecność licznych mikroorganizmów w chmurach. Gdy wykryliśmy pierwsze ślady fosforowodoru w spektrum Wenus, byłam w szoku, mówi profesor Greaves. Naukowcy postanowili zweryfikować swoje spostrzeżenie. Dlatego wystarali się o 3 godziny czasu pracy ze znacznie bardziej czułym ALMA. Obróbka uzyskanych danych zajęła im pełne 6 miesięcy. W końcu okazało się, że i ALMA widzi ślady fosforowodoru. Udało nam się przeprowadzić obserwacje, gdy Wenus była pod dobrym dla ALMA kątem względem Ziemi. Obróbka danych nie była łatwa, gdyż ALMA nie jest zwykle wykorzystywana do poszukiwania subtelnych sygnałów w bardzo jasnym obiektach, jakim jest Wenus, mówi doktor Anita Richards z UK ALMA Regional Centre. Oba instrumenty pokazały to samo, słaby sygnał absorpcji w spektrum typowym dla fosforowodoru, gdy molekuły są od spodu podświetlane przez cieplejsze chmury, dodaje profesor Greaves. Obliczeniami koncentracji fosforowodoru w atmosferze Wenus zajął się profesor Hidao Sagawa z Uniwersytetu Kyoto Sangyo. Okazuje się, że na każdy miliard molekuł zaledwie 20 to molekuły fosforowodoru. Przeprowadzono też obliczenia, które miałyby wykazać, czy na Wenus fosforowodór może powstawać w sposób naturalny bez udziału organizmów żywych. To było trudne zadanie, gdyż jedyne informacje na temat fosforu na Wenus pochodzą z radzieckiego lądownika Vega 2, który dotarł na powierzchnię Wenus w 1985 roku. Szacunkami dotyczącymi źródeł fosforowodoru zajął się zespół pod kierownictwem doktora Williama Bainsa z MIT. Naukowcy stwierdzili, że fosforowodór mógłby pochodzić z wulkanów, uderzeń piorunów, czy z oddziaływania promieniowania słonecznego z powierzchnią Wenus, jednak w ten sposób nie powstałoby więcej niż 1/10000 obserwowanej ilości tej molekuły. Z kolei, jak obliczył doktor Paul Rimmer z Cambridge University, ziemskie mikroorganizmy, by wyprodukować tyle fosforowodoru, ile zaobserwowano w atmosferze Wenus, musiałyby pracować z zaledwie 10% swojej maksymalnej wydajności. Na Ziemi mikroorganizmy absorbują minerały zawierające fosfór, dodają do niego wodór i wydzielają fosforowodór. Nie wiadomo, dlaczego to robią, gdyż zużywają przy tym energię. Być może fosforowodór jest tu produktem ubocznym innego procesu, a może służy do odstraszania konkurencji. Tak czy inaczej musimy brać pod uwagę, że jeśli jakieś mikroorganizmy istnieją na Wenus, to prawdopodobnie bardzo się one różną od ziemskich mikroorganizmów. Tutaj rodzi się pytanie, jak takie organizmy mogłyby przetrwać. Na Ziemi niektóre mikroorganizmy radzą sobie nawet z 5-procentowym zakwaszeniem środowiska. Jednak na Wenus jest zupełnie inaczej. Co prawda w wysokich partiach chmur panują tam temperatury do 30 stopni Celsjusza, ale chmury te w około 90% składają się z kwasu siarkowego. Profesor Sara Seager i doktor Janusz Petkowski z MIT badają obecnie, czy mikroorganizmy mogą w jakiś sposób ochronić się przed działaniem kwasu przebywając w kroplach tworzących chmury. « powrót do artykułu
  5. Prowadzone w czasie zimnej wojny testy broni jądrowej zmieniały wzorce opadów w miejscach oddalonych o tysiące kilometrów od miejsc detonacji, wynika z najnowszych badań. Naukowcy z University of Reading badali, w jaki sposób ładunki elektryczne pochodzące z promieniowania uwolnionego w czasie detonacji jądrowych, wpłynęły na formowanie się chmur deszczowych. Na łamach Physical Review Letters ukazał się właśnie artykuł, w którym czytamy: uważa się, że na opady deszczu ma wpływ ładunek elektryczny kropli, który jest związany z cyrkulacją powietrza przechodzącego przez chmury. Przetestowaliśmy tę hipotezę badając obieg powietrza w czasie sztucznie podniesionej radioaktywności. Naukowcy wykorzystali dane z lat 1962–1964 zebrane przez stację badawczą w Szkocji. Porównali dni o niskim oraz wysokim naładowaniu atmosfery, ładunkami elektrycznymi generowanymi w wyniku podwyższonej radioaktywności po testach jądrowych. Odkryli, że w okresach wyższej radioaktywności chmury były wyraźnie grubsze i spadało o 24% więcej deszczu. Już w przeszłości naukowcy badający wzorce radioaktywności z czasów Zimnej Wojny dowiadywali się nowych rzeczy o globalnej cyrkulacji powietrza. My wykorzystaliśmy te dane do zbadania wpływu radioaktywności na opady, mówi główny autor badań, profesor Giles Harrison. Badanie związków ładunku elektrycznego z opadami deszczu w warunkach naturalnych jest bardzo trudne. Tym razem z pomocą przyszły polityka i wyścig zbrojeń. Porównując informacje o testach nuklearnych z danymi pogodowymi uczeni mogli sprawdzić, jak wpłynęły one na wzorce opadów. Mimo, że testy takie były prowadzone w odległych regionach, opad radioaktywny rozprzestrzeniał się szeroko w atmosferze. Promieniowanie jonizuje zaś powietrze, przez co dochodzi do uwolnienia ładunków elektrycznych. Uczeni wzięli więc pod lupę dane z dwóch dobrze wyposażonych stacji Met Office, jednej z Kew w pobliżu Londynu, i drugiej położonej na Szetlandach. Jako, że Szetlandy położone są daleko od lądu, wpływ innych źródeł antropogenicznych zanieczyszczeń jest tam stosunkowo niewielki. Łatwiej więc wyodrębnić wpływ promieniowania jonizującego na chmury. Jako, że pomiary ładunków elektrycznych w atmosferze najłatwiej jest wykonać w pogodne dni, naukowcy wykorzystali dane ze stacji w Kew do uzyskania informacji dla 150 dni w czasie których nad Szetlandami było pochmurnie. Okazało się, że w dniach, gdy atmosfera była bardziej naelektryzowana w wyniku testów broni jądrowej, pokrywa chmur nad Szetlandami była grubsza i padało więcej deszczu. Badania takie będą pomocne nie tylko w przewidywaniu pogody, ale mogą również przydać się podczas badań i projektów związanych z geoinżynierią. Dzięki nim możliwe będzie bowiem wpływanie na deszcz, zapobieganie poważnym suszom czy powodziom, bez potrzeby używania środków chemicznych do zasiewania bądź rozpraszania chmur. Profesor Harrison jest też głównym badaczem w prowadzonym przez Zjednoczone Emiraty Arabskie projekcie Rain Enhacement Science, w ramach którego bada wpływ ładunków elektrycznych generowanych przez pustynne pyły na opady nad ZEA. « powrót do artykułu
×
×
  • Dodaj nową pozycję...