Znajdź zawartość
Wyświetlanie wyników dla tagów ' biomasa' .
Znaleziono 4 wyniki
-
Ssaki to jedne z najbardziej znanych i rozpoznawalnych zwierząt. Niektóre ich gatunki stały się symbolami dzikiej przyrody i prób jej ochrony. Brak jest jednak ogólnie przyjętych zasad oceny ich łącznej biomasy. Zadania tego podjęli się eksperci z izraelskiego Instytutu Nauki Weizmanna, Uniwersytetu w Tel Awiwie oraz Uniwersytetu Ben-Guriona. Wyniki, uzyskane m.in. za pomocą algorytmu sztucznej inteligencji, mogą zaskakiwać. Izraelczycy oceniają, że łączna biomasa dzikich ssaków lądowych to zaledwie 22 miliony ton, a ssaków morskich to kolejne 40 milionów ton. Z obliczeń wynika, że większość masy dzikich ssaków stanowią parzystokopytne. Największą łączną masę – 2,7 miliona ton – ma jeleń wirginijski, którego populacja szacowana jest na 45 milionów osobników. Gatunkiem o drugiej największej masie (1,9 miliona ton) jest dzik ze światową populacją wynoszącą 30 milionów osobników. Następne pozycje na liście zajmują słoń afrykański (1,3 mln ton, 0,5 mln osobników), kangur olbrzymi (0,6 mln ton, 20 mln osobników) i mulak czarnoogonowy (0,5 mln ton, 7 milionów osobników). Na dalszych miejscach znajdziemy łosia, jelenia szlachetnego, sarnę europejską, kangura rudego i guźca zwyczajnego. Wymienione gatunki stanowią około 40% biomasy wszystkich ssaków lądowych na Ziemi. Autorzy badań podkreślają, że z powyższych szacunków usunęli trzy gatunki ssaków synantropijnych, czyli takich, które w dużej mierze wchodzą w interakcje z ludźmi i których zagęszczenie populacji jest znacznie większe w pobliżu siedzib ludzkich, niż poza nimi. Te usunięte gatunki to szczur śniady, szczur wędrowny oraz mysz domowa. Wielkość populacji tych zwierząt, ze względu na brak danych i ich rozpowszechnienie, jest bardzo trudna do oszacowania. Gatunki te uwzględniono w kategorii zwierząt udomowionych, jednak miały one minimalny wpływ na te dane. Na przykład masę całej populacji myszy domowej oszacowano na 1 milion ton. Te 22 miliony ton ssaków lądowych i 40 milionów ton ssaków morskich to zaledwie niewielka część wszystkich ssaków na Ziemi. Łączna ich masa jest bowiem zdominowana przez masę ssaków udomowionych, którą autorzy badań wyliczają na ok. 630 milionów ton oraz masę ludzi, oszacowana na około 390 milionów ton. To pokazuje, w jak olbrzymim stopniu ludzie zdominowali dziką przyrodę. Dzikie ssaki stanową zaskakująco niewielką część zwierząt na Ziemi, szczególnie w porównaniu z ludźmi i zwierzętami udomowionymi. Masa samych tylko krów została oszacowana na 420 milionów ton, a masa psów jest mniej więcej taka sama, jak wszystkich dzikich ssaków lądowych. Z kolei masa kotów jest dwukrotnie większa niż masa słoni afrykańskich i czterokrotnie większa niż masa łosi. Masa gryzoni, bez przypisanych do zwierząt udomowionych szczurów i myszy, to 7% masy ssaków lądowych, a masa mięsożerców to 3%. Jeśli zaś chodzi o masę ssaków morskich to ponad połowę stanowi masa fiszbinowców. Najbardziej licznymi ssakami są zaś nietoperze. Co prawda stanowią one jedynie 7% ich masy, ale za to około 66% liczebności. Eksperci zauważają, że to jedynie zgrubne szacunki, ale stanowią bardzo dobry punkt wyjścia do kolejnych, bardziej dokładnych wyliczeń. Pokazują też one, jak złudne jest przekonanie, że świat dzikich zwierząt jest liczny i szeroko rozpowszechniony. « powrót do artykułu
-
Młodzi naukowcy z Wydziału Geoinżynierii Uniwersytetu Warmińsko-Mazurskiego (UWM) stworzyli Kapsułę Nowego Życia, a w niej warunki niezbędne do powstania małego ekosystemu. Olsztynianie pracują nad specjalnym nawozem, który pozwoli na uprawę i rozwój roślinności na Marsie i w innych miejscach, w których obecnie jest to niemożliwe. Wyniki tych badań mogą stanowić przełom nie tylko dla NASA czy Elona Muska planującego osiedlić ludzi na Czerwonej Planecie. Pomogą także walczyć z głodem na wyjałowionych terenach pustynnych - podkreślono w komunikacie Wydziału Geoinżynierii. Autorami opisywanych badań są Izabela Świca ze Szkoły Doktorskiej UWM i Hubert Kowalski, doktorant z Katedry Inżynierii Środowiska na Wydziale Geoinżynierii. Świca i Kowalski zajmują się wytworzeniem specjalnego nawozu z biomasy glonowo-grzybowej. Co ważne, substancja ma właściwości rekultywujące glebę, również reolit marsjański. Początki projektu "Kapsuła Nowego Życia NLC" to projekt, który w 2019 r. otrzymał dofinansowanie w konkursie Studencki Grant Rektora. Autorzy kapsuły - Hubert Kowalski, Maciej Piejdak oraz Izabela Świca - stworzyli Kapsułę w ramach Koła Naukowego Inżynierii Środowiska. Jak zaznaczono w Wiadomościach Uniwersyteckich, pomysł, który wystawili do rektorskiego konkursu, był na tyle ciekawy i rozwojowy, że nie tylko otrzymał grant, ale i zakończył się zgłoszeniem do Urzędu Patentowego RP. Autorzy złożyli też propozycję jego zastosowania do użyźniania jałowych pustynnych gruntów rządom Zjednoczonych Emiratów Arabskich i Kataru. Do tego, żeby właściwości glonów i grzybów wykorzystać, zainspirował nas prof. Mirosław Krzemieniewski, opiekun naszego koła – opowiada Hubert Kowalski. Studenci stwierdzili, że skoro grzyby i glony się uzupełniają, należy je połączyć. Powstał pomysł podwójnego reaktora do ich hodowli. W górnej części grubej szklanej rury znajdują się zielenice - a konkretnie chlorella zwyczajna (Chlorella vulgaris) - w dolnej rezydują zaś grzyby. Na pytanie jakie, Kowalski odpowiada następująco: leśne, a mówiąc nienaukowo – tzw. psie. Pozbieraliśmy ich grzybnie w lesie i zasadziliśmy na podłożu ze słomy w naszym reaktorze. Glony i grzyby mają dużo światła i ciepła, dostają pożywki i ich jedynym zadaniem jest produkować biomasę. Badamy współpracę i wzajemne zależności rozwoju między glonami a grzybami w warunkach niemal samowystarczalnych. Grzyby, rozkładając namnażającą się biomasę mikroglonów, wydzielają niezbędny do rozwoju glonów dwutlenek węgla. Glony zaś, w procesie fotosyntezy, wytwarzają tlen dla grzybów. W ten sposób powstaje nawóz, który użyźnia glebę – dodaje. Mechanizm działania i prace nad udoskonaleniem Woda zostanie pozyskana z urządzenia wykorzystującego zjawisko skraplania się rosy. Wykorzystanie paneli fotowoltaicznych pozwoli m.in. na ogrzanie reaktora z glonami i grzybami nocą. Jak podaje Lech Kryszałowicz, redaktor naczelny Wiadomości Uniwersyteckich, część glonów z górnego reaktora będzie dopływać do dolnego z grzybami, aby miały czym się pożywiać. Z zewnątrz kapsuła będzie potrzebować tylko co jakiś czas pożywki dla glonów. Nadmiar biomasy z reaktora będzie odprowadzany bezpośrednio do gruntu pod kapsułą, użyźniając go. Kapsuły można ustawiać przy sobie, tak aby powstawały poletka. Nadmiar tlenu uleci do atmosfery. W warunkach laboratoryjnych z 2 kg CO2 udało się uzyskać 1 kg biomasy. Kapsuła Nowego Życia to bardzo oryginalny i obiecujący pomysł. To szansa na użyźnienie gruntów na obszarach o glebach ubogich, pustynnych, gdyż wzbogaca je w substancje organiczne. Ważne jest też to, że Kapsuły nie potrzebują licznej obsługi. Jej autorzy myślą już o zasilaniu ich w pożywki dla glonów za pomocą dronów, a Izabela o wykorzystaniu tego pomysłu do ożywienia Marsa – pochwalił byłych podopiecznych prof. Mirosław Krzemieniewski. Badania rozpoczęły pod kierunkiem prof. Krzemieniewskiego, a obecnie są kontynuowane pod przewodnictwem prof. dr. hab. Marcina Dębowskiego. Pracujemy ciągle nad udoskonaleniem kapsuły, czyli np. zwiększeniem wydajności glonów i badaniem, w jakim tempie substancja organiczna przenika przez grunt – mówi Kowalski. Jeśli próby zasilania Kapsuł przez drony się powiodą, obniży to koszty ich eksploatacji i niewątpliwie zwiększy ich atrakcyjność. Będzie ich można ustawiać więcej i w większej liczbie miejsc, także w tych z trudnym dostępem. Pracujemy na symulancie marsjańskiej gleby, który pochodzi z Hawajów. Na podstawie zgromadzonych danych pozyskanych z dotychczasowej eksploracji Czerwonej Planety Amerykanie stworzyli kopię skały pokrywającej Marsa o identycznych właściwościach. Badając wytworzony nawóz, w Kapsule Nowego Życia eksperymentujemy na próbkach właśnie tego symulantu – wyjaśnia Izabela Świca. Nie tylko Mars Wyniki badań doktorantów mogą pomóc w odtworzeniu żyzności gleb na terenach zdegradowanych, a także pustynnych. Nasze badania umożliwią uprawę i rozwój roślinności w miejscach, na których dzisiaj nie da się tego robić. W obliczu zwiększającej się liczby ludności na świecie i ciągle nierozwiązanego problemu głodu, organiczny nawóz użyźniający glebę niesie nadzieję na poprawę warunków życia dla milionów ludzi - podkreśla Świca. Prace badawcze mają się zakończyć w 2023 roku. « powrót do artykułu
- 1 odpowiedź
-
- Kapsuła Nowego Życia
- reaktor
-
(i 6 więcej)
Oznaczone tagami:
-
Obecny w atmosferze dwutlenek węgla napędza wzrost roślin. Wiele osób żywi przekonanie, że im więcej węgla w atmosferze, tym bujniejszy wzrost roślinności, a im więcej roślinności, tym więcej węgla z atmosfery one wchłaniają. Wyniki badań, które opublikowano właśnie na łamach Nature wskazują, że gdy więcej CO2 w atmosferze powoduje bardziej bujny wzrost roślin ma to... negatywny wpływ na zdolność gleby do przechowywania węgla. Jedno z możliwych wyjaśnień tego fenomenu brzmi: bujniejsza roślinność wykorzystuje więcej składników zawartych w glebie. A to z kolei przyczynia się do zwiększonej aktywności mikroorganizmów, w wyniku której z gleby uwalniany jest dwutlenek węgla, który bez tej dodatkowej aktywności zostałby w niej uwięziony. Wyniki badań przeczą powszechnemu przekonaniu, że im więcej biomasy rośnie, tym więcej jej się rozkłada, a zawarty w niej węgiel zostaje uwięziony w glebie. Autorzy najnowszych badań przeanalizowali dane ze 108 przeprowadzonych wcześniej eksperymentów, podczas których sprawdzano poziom węgla w glebie, tempo wzrostu roślin oraz wpływ wysokiego stężenia CO2 na oba te czynniki. Ze zdumieniem zauważyli istnienie mechanizmu, który przeczy intuicji. Gdy zwiększa się masa roślin, zwykle zmniejsza się ilość węgla w glebie, mówi główny autor badań, Cesar Terrer z Uniwersytetu Stanforda. Okazało się, że jednoczesny wzrost masy roślinnej oraz koncentracja węgla w glebie są bardzo trudne do osiągnięcia, mówi jeden z autorów badań, profesor Rob Jackson. Uczony dodaje, że obecnie stosowane modele klimatyczne nie biorą pod uwagę tego zjawiska, wskutek czego prawdopodobnie przeszacowują one zdolność gleby do przechowywania węgla pobranego z atmosfery. Szacuje się, że rośliny i gleba absorbują obecnie około 30% CO2 emitowanego przez człowieka. Oszacowanie, jak wiele węgla może zostać uwięzione w glebie jest niezwykle ważne, gdyż węgiel ten powinien pozostawać przez długi czas. Gdy roślina ulega rozkładowi, część uwięzionego w niej węgla powraca do atmosfery. Jednak gdy węgiel zostaje uwięziony w glebie, pozostaje tam przez setki lub tysiące lat, wyjaśnia Terrer. Nowa praca bazuje na opracowaniu autorstwa Terrera, Jacksona i innych, którzy w 2019 roku oszacowali, że dwukrotne – w porównaniu z epoką przedprzemysłową – zwiększenie koncentracji atmosferycznego CO2 doprowadzi do zwiększenia biomasy o około 12%, zatem rośliny prawdopodobnie odegrają znacznie mniejszą niż przewidywano rolę w wycofywaniu węgla z atmosfery. Teraz, po sprawdzeniu jednoczesnej zdolności roślin i gleby do pobierania węgla z atmosfery, uczeni doszli do wniosku, że należy zrewidować i ten mechanizm. W glebie uwięzione jest więcej węgla niż w roślinach. Dlatego też musimy się jej lepiej przyjrzeć, gdy zastanawiamy się nad przewidywanymi zmianami szaty roślinnej, stwierdza Jackson. Z badań wynika, że niespodziewanie dużo węgla mogą w przyszłości absorbować użytki zielone, jak łąki czy pastwiska. W scenariuszu, w którym CO2 jest dwukrotnie wyższe niż przed rewolucją przemysłową, zdolność użytków zielonych do przechowywania węgla rośnie o 8%. Tymczasem zdolność lasów pozostaje na tym samym poziomie co obecnie. Stanie się tak pomimo tego, iż biomasa lasów ma w tym czasie wzrosnąć o 23%, a biomasa użytków zielonych o 9%. Dzieje się tak częściowo dlatego, że drzewa wiążą w glebie stosunkowo mało pochłanianego przez siebie węgla. Z punktu widzenia bioróżnorodności sadzenie lasów na obszarach zajętych przez naturalne użytki zielone czy sawanny to błąd. Nasze badania pokazują, że ekosystemy użytków zielonych są bardzo ważne z punktu widzenia pochłaniania węgla, mówi Terrer. « powrót do artykułu
-
- CO2
- dwutlenek węgla
-
(i 4 więcej)
Oznaczone tagami:
-
Słonie niszczą roślinność i wspomagają rozrost lasu
KopalniaWiedzy.pl dodał temat w dziale Nauki przyrodnicze
Słonie, choć to sprzeczne z intuicją, zjadając i zadeptując roślinność, pomagają lasom przechowywać więcej węgla pobranego z atmosfery. Jeśli słonie wyginą, ilość węgla składowanego w lasach tropikalnych centralnej Afryki zmniejszy się o 7%. Fabio Berzaghi i jego koledzy z Laboratorium Klimatu i Nauk Przyrodniczych w Gif-sur-Yvette we Francji chcieli sprawdzić czy słonie, niszcząc roślinnośc, wspomagają większe drzewa, by te rosły jeszcze większe. Naukowcy stworzyli model matematyczny, w którym opisali różnorodność roślin i symulowali wspływ słoni polegający na tym, że eliminują one częśc mniejszych roślin. Model wykazał, że słonie zmniejszają gęstość roślinności w lesie, ale przez to zwiększają średni obwód pni drzew i ogólną ilość biomasy roślinnej. Dzięki nim długo rosnące drzewa żyją dłużej i przechwytują większą ilość węgla. Dane z modelu zgadzają się z danych obserwacyjnych z Kongo, gdzie porównywano roślinność w miejscach, w których żyją słonie i miejscach, gdzie zwierzęta te nie występują. Istnienie słoni może też wyjaśniać widoczne różnice pomiędzy lasami deszczowymi Afryki i Ameryki Południowej. W Ameryce brak jest wielkich roślinożerców, w lesie deszczowym liczba drzew na hektar jest większa, ale zwykle drzewa te są mniejsze, mniejsza jest też ich łączna masa. Sądzimy, że do istnienia tych różnic przyczyniają się wielcy roślinożercy, mówi Berzaghi. Jako, że wielkie afrykańskie drzewa długo żyją, gwałtowny spadek populacji słoni, do jakiego doszło w ciągu ostatnich stu lat, gdy ich liczebność zmniejszyła się z 1 000 000 do obecnych 100 000, nie jest jeszcze widoczny w wyglądzie lasu. Jednak, jak wynika z obliczeń, spadek ten oznacza, że biomasa afrykańskiego lasu deszczowego zmniejszy się o 3 gigatony węgla, czyli o tyle ile np. Wielka Brytania emituje w ciągu 14 lat. Jak zauważa Berzaghi, słonie wyświadczają nam bezpłatnie usługę, dzięki której w atmosferze jest mniej węgla, a więc zmniejszają efekt cieplarniany. « powrót do artykułu