Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' badanie USG' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. Wg raportu Światowej Organizacji Zdrowia (WHO) spontaniczny przedwczesny poród dotyczy 15 milionów noworodków rocznie. Aż milion z nich umiera. Wiele przez całe życie mierzy się z niepełnosprawnością. Wykorzystywana powszechnie manualna analiza obrazów ultrasonograficznych umożliwia wykrycie ewentualnych problemów, ale nie jest to metoda doskonała. Problem ten dostrzegają lekarze. W 2017 roku Nicole Sochacki-Wójcicka (w trakcie specjalizacji z ginekologii) oraz Jakub Wójcicki zgłosili się do dr. Tomasza Trzcińskiego z Wydziału Elektroniki i Technik Informacyjnych PW z pytaniem, czy jest możliwość zrealizowania projektu predykcji spontanicznego przedwczesnego porodu z wykorzystaniem sieci neuronowych. Wtedy powstał zespół badawczy i zaczęły się prace. Pierwsze efekty już znamy. Nasze rozwiązanie może wspomóc diagnostykę komputerową i pozwolić z większą dokładnością przewidywać spontaniczne przedwczesne porody – wyjaśnia Szymon Płotka, absolwent Politechniki Warszawskiej i jeden z członków zespołu pracującego nad projektem. Wytrenować sieć neuronową Przed rozpoczęciem projektu, współpracujący z nami lekarze przygotowali zestaw danych uczących, walidacyjnych oraz adnotacji w formie obrysu kształtu szyjek macicy na obrazach ultrasonograficznych oraz numerycznych (0 i 1), odpowiadającymi kolejno: poród w terminie, poród przedwczesny – wyjaśnia Szymon Płotka. Po wstępnym oczyszczeniu takie dane są wykorzystywane jako dane „uczące” sieć neuronową – w tym przypadku konwolucyjną (splotową). Analizuje ona każde zdjęcie piksel po pikselu, wyodrębniając z nich niezbędne cechy, które posłużą do zadania segmentacji interesującego nas fragmentu obrazu (w tym przypadku szyjki macicy) oraz klasyfikacji (czy mamy do czynienia z porodem przedwczesnym, czy nie) – tłumaczy dalej Szymon Płotka.W trakcie treningu sieć neuronowa testuje swoje predykcje na zbiorze walidacyjnym. Po zakończeniu trenowania sieci neuronowej, jest ona sprawdzana na danych testowych, które nie zostały wykorzystane w ramach treningu. W ten sposób weryfikuje się poprawność wytrenowanego modelu. W ramach projektu powstały dwie publikacje naukowe. Efektem prac opisanych w „Estimation of preterm birth markers with U-Net segmentation network” (publikacja dostępna tutaj i tutaj) jest m.in. redukcja błędu predykcji spontanicznych przedwczesnych porodów z 30% (manualnie przez lekarzy) do 18% przez sieć neuronową. W „Spontaneous preterm birth prediction using convolutional neural networks” (szczegóły tutaj i tutaj) naukowcy zaprezentowali poprawę jakości segmentacji w stosunku do pierwszej publikacji i uzyskali lepsze wyniki klasyfikacji. Zgodnie z naszą najlepszą wiedzą, są to jedyne istniejące prace podejmujące się zadania predykcji spontanicznego przedwczesnego porodu w oparciu o transwaginalne obrazy ultrasonograficzne – mówi Szymon Płotka. Naukowcy pracują obecnie nad serwisem w formie aplikacji internetowej. Chcą tam udostępnić przygotowane modele sieci neuronowej. Ma to pomóc ginekologom analizować obrazy ultrasonograficzne i tym samym wesprzeć diagnostykę spontanicznego przedwczesnego porodu. A to może uratować życie i zdrowie milionów noworodków. « powrót do artykułu
×
×
  • Dodaj nową pozycję...