Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' IceCube' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 5 wyników

  1. Znajdujący się na Biegunie Południowym wielki detektor neutrin IceCube zarejestrował wysokoenergetyczne wydarzenie, które potwierdziło istnienie zjawiska przewidzianego przed 60 laty i wzmocniło Model Standardowy. Wydarzenie to zostało wywołane przez cząstkę antymaterii o energii 1000-krotnie większej niż cząstki wytwarzane w Wielkim Zderzaczu Hadronów (LHC). Ponad 4 lata temu, 8 grudnia 2016 roku wysokoenergetyczne antyneutrino elektronowe wpadło z olbrzymią prędkością w pokrywę lodową Antarktydy. Jego energia wynosiła gigantyczne 6,3 petaelektronowoltów (PeV). Głęboko w lodzie zderzyło się ono z elektronem, doprowadzając do pojawienia się cząstki, która szybko rozpadła się na cały deszcz cząstek. Ten zaś został zarejestrowany przez czujniki IceCube Neutrino Observatory. IcCube wykrył rezonans Glashowa, zjawisko, które w 1960 roku przewidział późniejszy laureat Nagrody Nobla, Sheldon Glashow. Pracujący wówczas w Instytucie Nielsa Bohra w Kopenhadze naukowiec opublikował pracę, w której stwierdził, że antyneutrino o odpowiedniej energii może wejść w interakcje z elektronem, w wyniku czego dojdzie do pojawienia się nieznanej jeszcze wówczas cząstki. Cząstką tą był odkryty w 1983 roku bozon W. Po odkryciu okazało się, że ma on znacznie większą masę, niż przewidywał Glashow. Wyliczono też, że do zaistnienia rezonansu Glashowa konieczne jest antyneutrino o energii 6,3 PeV. To niemal 1000-krotnie większa energia niż nadawana cząstkom w Wielkim Zderzaczu Hadronów. Żaden obecnie działający ani obecnie planowany akcelerator nie byłby zdolny do wytworzenia tak wysokoenergetycznej cząstki. IceCube pracuje od 2011 roku. Dotychczas obserwatorium wykryło wiele wysokoenergetycznych zdarzeń, pozwoliło na przeprowadzenie niepowtarzalnych badań. Jednak zaobserwowanie rezonansu Glashowa to coś zupełnie wyjątkowego. Musimy bowiem wiedzieć, że to dopiero trzecie wykryte przez IceCube wydarzenie o energii większej niż 5 PeV. Odkrycie jest bardzo istotne dla specjalistów zajmujących się badaniem neutrin. Wcześniejsze pomiary nie dawały wystarczająco dokładnych wyników, by można było odróżnić neutrino od antyneutrina. To pierwszy bezpośredni pomiar antyneutrina w przepływających neutrinach pochodzenia astronomicznego, mówi profesor Lu Lu, jeden z autorów analizy i artykułu, który ukazał się na łamach Nature. Obecnie nie jesteśmy w stanie określić wielu właściwości astrofizycznych źródeł neutrin. Nie możemy np. zmierzyć rozmiarów akceleratora czy mocy pól magnetycznych w rejonie akceleratora. Jeśli jednak będziemy w stanie określić stosunek neutrin do antyneutrin w całym strumieniu, bo będziemy mogli badać te właściwości, dodaje analityk Tianlu Yaun z Wisconsin IceCube Particle Astrophysics Center. Sheldon Glashow, który obecnie jest emerytowanym profesorem fizyki na Boston University mówi, że aby być absolutnie pewnymi wyników, musimy zarejestrować kolejne takie wydarzenie o identycznej energii. Na razie mamy jedno, w przyszłości będzie ich więcej. Niedawno ogłoszono, że przez najbliższych kilka lat IceCube będzie udoskonalany, a jego kolejna wersja – IceCube-Gen2 – będzie w stanie dokonać większej liczby tego typu pomiarów. « powrót do artykułu
  2. Fizycy z Niemiec i Ameryki Północnej poinformowali o planach wybudowania u wybrzeży Kanady największego na świecie obserwatorium neutrin. The Pacific Ocean Neutrino Experiment (P-ONE) ma rejestrować najbardziej energetyczne neutrina pochodzące z ekstremalnych zjawisk w Drodze Mlecznej. Obserwatoria neutrin rejestrują promieniowanie Czerenkowa, które pojawia się, gdy neutrino przechodzące przez Ziemię trafi w jądro atomu, co powoduje powstanie szybko poruszających się cząstek. Obecnie największym tego typu urządzeniem jest opisywane przez nas IceCube, które korzysta z licznych fotodetektorów zawieszonych na linach, które są opuszczone głęboko w lód na Biegunie Południowym. Całość zajmuje 1 km3. W 2013 roku to właśnie IceCube zarejestrował pierwsze neutrino pochodzące spoza naszej galaktyki. Niedawno informowaliśmy o wykryciu tajemniczych sygnałów, które mogą doprowadzić do rewolucji w Modelu Standardowym. Jak mówi Elisa Resconi w Uniwersytetu w Monachium, która stoi na czele P-ONE, wyniki uzyskane dotychczas przez IceCube dowodzą, że potrzebne są dodatkowe obserwatoria neutrin oraz rozbudowa samego IceCube. Stoimy w przededniu istnienia astronomii opartej o neutrino. Jeśli jednak będzie się ona opierała o jedno obserwatorium, to jej rozwój potrwa bardzo długo, być może całe dekady. P-ONE ma składać się z 7 grup po 10 lin z czujnikami. Całość ma mieć objętość 3 km3. Dzięki temu, że będzie większe, obserwatorium będzie w stanie wyłapać rzadsze neutrina o większej energii. Będzie najbardziej czułe w zakresie dziesiątku teraelektronowoltów, podczas gdy IceCube jest w stanie zarejestrować neutrina o energiach rzędu pojedynczych TeV. P-ONE będzie obserwowało też inną część nieboskłonu, wyłapując głównie neutrina z południowej hemisfery. Częściowo jednak zakres prac obu obserwatoriów będzie się nakładał, zatem możliwa będzie niezależna weryfikacja obserwacji. Nowe obserwatorium zostanie umieszczone na głębokości około 2,6 km, w Cascadia Basin około 200 kilometrów od wybrzeży Kolumbii Brytyjskiej. Jego budowniczowie chcą wykorzystać już istniejącą infrastrukturę. Znajduje się tam bowiem 800-kilometrowe okablowanie używane przez Ocean Networks Canada, które zasila i przesyła dane ze znajdujących się na dnie oceanu urządzeń badawczych. Pierwsze eksperymenty w tym miejscu rozpoczęto w 2018 roku, kiedy to opuszczono dwie liny z czujnikami i stwierdzono, że wybrane miejsce ma odpowiednie właściwości optyczne do wykrywania neutrin. Obecnie P-ONE planuje opuszczenie dodatkowej stalowej liny zawierającej spektrometry, lidary i wykrywacze mionów. Pod koniec 2023 roku ma zostać zainstalowana pierwsza część obserwatorium, pierścień z 7 linami o długości kilometra każda. Jeśli to się uda, naukowcy zwrócą się z wnioskiem o grant w wysokości 50–100 milionów USD na dokończenie budowy obserwatorium. Koszty osobowe pochłoną kolejne 100 milionów USD. Resconi ma nadzieję, że prace nad budową P-ONE zakończą się przed rokiem 2030, jednak przyznaje, że jest to plan bardzo ambitny. Główną niewiadomą jest działanie czujników w warunkach dużego ciśnienia, obecności soli i stworzeń morskich. To nie pierwszy pomysł, by umieścić obserwatorium neutrin w morzu. Już w 2014 roku pracę miał rozpocząć umieszczony w Morzu Śródziemnym KM3NeT. Dotychczas udało się zainstalować jedynie 2 z 230 lin. Obecnie planuje się, że rozpocznie on pracę w 2026 roku. Z kolei u wybrzeży Francji powstaje jeszcze inny wykrywacz. Z planowanych 115 lin umieszczono dotychczas jedynie 6. Uruchomienie planowane jest na rok 2024. Jak mówi Resconi, jedną z największych trudności w budowie obserwatoriów neutrin jest brak odpowiednio przeszkolonych fachowców. Fizycy wiele rzeczy robią samodzielnie. Na przykład zbudowane przez nich skrzynki, które służą do łączenia kabli na dnie morza, zawiodły. Uczona ma nadzieję, że dzięki doświadczeniu pracowników Ocean Networks Canada uda się uniknąć kolejnych błędów. Dzięki zespołowi 30–40 osób zajmujących się budową infrastruktury, fizycy mogą zająć się stroną naukową przedsięwzięcia. « powrót do artykułu
  3. Grupa amerykańskich fizyków udowodniła, że możliwe jest zarejestrowanie echa pochodzącego z fali radaru odbitej od kaskady wysokoenergetycznych cząstek. Odkrycie to może doprowadzić do skonstruowania nowego teleskopu wykrywającego neutrina o energiach, które poza zasięgiem obecnie stosowanych metod badawczych. Jednym z najbardziej niezwykłych instrumentów naukowych jest teleskop IceCube. W jego skład wchodzą dziesiątki kilometrów lin z umocowanymi do nich fotopowielaczami. Urządzenie wykrywa promieniowanie Czerenkowa pojawiające się, gdy kaskada naładowanych cząstek, pojawiająca się podczas podróży neutrin przez ziemską atmosferę, wchodzi w interakcje z lodem. IceCube jest w stanie wykrywać neutrina o energiach do 10 PeV (1016 eV). Ograniczenie to wynika z faktu, że w zakresie fali widzialnej promieniowanie Czerenkowa jest mocno osłabiane przez lód. Taki sygnał może przebyć w lodzie najwyżej 200 metrów. Inaczej działa ANITA, czyli wykrywacz neutrin, który za pomocą balonu unosi się nad Antarktydą. To właśnie ANITA zarejestrowała tajemnicze sygnały, których dotychczas fizycy nie potrafią wyjaśnić. ANITA ma z kolei inny problem niż IceCube. Nie potrafi wykryć neutrin o energiach mniejszych niż 100 PeV. Teraz Steven Prohira z Ohio State University wraz z kolegami wykazali, że możliwe jest aktywne wykrywanie neutrin. Można to zrobić poprzez rejestrację ech z fal emitowanych przez radar. Technika ta wykorzystuje fakt, że kaskada cząstek poruszających się przez materiał z prędkością bliską prędkości światła wyrzuca elektrony z atomów tego materiału. Przez krótką chwilę, zanim elektrony te zostaną powtórnie zaabsorbowane, możliwe jest wprowadzenie ich w oscylacje za pomocą zewnętrznych fal radiowych. Oscylacje takie generują własne fale radiowe, „echa” fal, które je wywołały. Olbrzymią zaletą tej techniki jest fakt, że działa ona niezależnie od energii badanych cząstek. Naukowcy wykorzystali podczas swoich badań akcelerator ze SLAC National Accelerator Laboratory. Użyli 4-metrowego kawałka plastiku, który miał symulować antarktyczny lód i potraktowali go wiązką miliarda elektronów o energii około 1010 eV każdy. Okazało się, że antena, skierowana na plastik była w stanie zarejestrować sygnał trwający około 10 ns. Zgadzał się on z teoretycznymi przewidywaniami, zatem naukowcy uznali, że zarejestrowany sygnał to echo wywołane jonizacją wewnątrz plastiku. Teraz Prohira i jego zespół planują przeprowadzenie eksperymentów na Antarktydzie. Chcą tam postawić eksperymentalny radar, który miałby wykrywać echa pochodzące z interakcji promieniowania kosmicznego z lodem. Jeśli ich pomysł uzyska finansowanie, taki nowatorskich radar wykrywający neutrina mógłby powstać w ciągu kilku lat. Później zaś chcieliby przed końcem dekady zbudować na Antarktydzie pełnowymiarowe obserwatorium. Najpierw chcemy udowodnić, że ta technika działa, a później chcemy wybudować pełnowymiarowy teleskop, mówi Prohira. Uczeni stwierdzają, że wielką zaletą takiego obserwatorium byłaby jego prostota. Prohira ocenia, że jego zbudowanie kosztowałoby kilka milinów dolarów. Na IceCube wydano 275 milionów USD. « powrót do artykułu
  4. Tajemnicze sygnały zarejestrowane nad Antarktydą nadal nie doczekały się wyjaśnienia, a opublikowany właśnie kolejny artykuł naukowy wskazuje, że sygnały te mogą pochodzić od cząstek spoza Modelu Standardowego. Coraz bardziej prawdopodobne staje się, że znaleziono coś, co nie pasuje do najbardziej rozpowszechnionej teorii fizycznej. Jak informowaliśmy przed dwoma laty w tekście zatytułowanym Tajemnicze sygnały wstrząsną współczesną fizyką?, w roku 2016 zależący do NASA Antarctic Impulsive Transient Antenna (ANITA), dryfujący nad Antarktyką balon z anteną wykrywającą promieniowanie kosmiczne, zarejestrował dwa impulsy promieniowania kosmicznego, które... pochodziły z Ziemi. Wówczas minęły 2 lata od wykrycia tych sygnałów, a nikt nie potrafił ich przekonująco wyjaśnić. Część naukowców już wtedy oceniała, że szansa, iż sygnały są zgodne z Modelem Standardowym wynosi 1/3.500.000. ANITA jest bowiem instrumentem, który jest w stanie wykryć neutrina o dużym przekroju czynnym, czyli o dużej energii. Urządzenie wykryło dwa sygnały pochodzące z Ziemi, co sugerowałoby, że wykryło neutrina, która przeszły przez planetę. Jednak neutrina o dużym przekroju czynnym nie przedostaną się przez Ziemię, zatem ANITA mogła wykryć nieznane dotychczas cząstki. Od czasu dokonania niezwykłego odkrycia przez ANITĘ wielu naukowców sugerowało, że może istnieć intensywne źródło neutrin. Być może spośród wielu wyemitowanych przezeń neutrin kilku udało się, mimo wszystko, przedostać przez Ziemię i zostały one zarejestrowane przez ANITĘ. Taki scenariusz postanowił sprawdzić Alex Pizzuto z University of Wisconsin-Madison i inni członkowie zespołu IceCube. IceCube wykorzystuje 5160 optycznych wykrywaczy neutrin. Gdy przechodzące przez lód neutrino wejdzie w interakcję z atomem wodoru lub tlenu, dochodzi do emisji sygnału, który IceCube wykrywa. IceCube jest znacznie bardziej czułe niż ANITA. Dlatego też naukowcy przejrzeli swoje archiwum danych, szukając w nich sygnału pochodzącego z potencjalnego źródła neutrin znajdującego się w kierunku, w którym sygnały zostały wykryte przez ANITĘ. Przeanalizowali dane z ośmiu lat, szukają podobieństw pomiędzy lokalizacją sygnałów zarejestrowanych przez ANITĘ, a lokalizacją sygnałów rejestrowanych przez IceCube. Wykorzystali przy tym trzy różne i uzupełniające się metody analizy danych, podczas których wzięli pod uwagę niewiadome związane z odkryciem dokonanym przez ANITĘ. Ponadto symulowali neutrina przechodzące przez Ziemię, by dowiedzieć się, ile z nich powinno ruszyć w drogę, by jedno mogło zostać wykryte przez ANITĘ. Takich samych obliczeń dokonali dla IceCube'a. Analizy pokazały, że w kierunku, z którego pochodziły sygnały zarejestrowane przez ANITĘ nie ma żadnego źródła neutrin. Jest to tym bardziej zaskakujące, że, ze względu na zjawisko znane jako regeneracja neutrin tau, wysokoenergetyczne neutrina, które nie mają szans dotrzeć do ANITY, wciąż powinny być wykrywane przez IceCube. Zjawisko to powoduje, że IceCube jest niezwykle przydatnym narzędziem do potwierdzania obserwacji dokonanych przez ANITĘ, gdyż na każdy anomalny sygnał wykryty przez ANITĘ IceCube powinno wykryć wielokrotnie więcej takich sygnałów. W tym przypadku nie wykrył niczego, mówi Anastasia Barbano z Uniwersytetu w Genewie. To zaś oznacza, że możemy odrzucić pomysł, iż sygnały pochodzą z intensywnego pojedynczego źródła, gdyż szansa, że sygnał taki zarejestruje ANITA, a nie zauważy go IceCube są bardzo małe, dodaje. Gdy ANITA zarejestrowała niezwykłe sygnały, wyjaśnienia ich pochodzenia można było pogrupować na trzy kategorie: istnienie intensywnego źródła neutrin, wystąpienie błędu w urządzeniu lub zarejestrowanie sygnału, którego nie opisuje Model Standardowy. Nasze analizy wykluczyły jedyne wyjaśnienie zgadzające się z Modelem Standardowym. Jeśli zatem sygnały są prawdziwe i nie pochodzą z błędów w urządzeniu, mogą one wskazywać na istnienie zjawiska fizycznego spoza Modelu Standardowego, mówi Pizzuto. « powrót do artykułu
  5. Przed dwoma laty nad Antarktyką zarejestrowano zjawisko, którego fizycy wciąż nie potrafią jednoznacznie wyjaśnić. Niewykluczone, że nie pasuje ono do Modelu Standardowego. W marcu 2016 roku należący do NASA Antarctic Impulsive Transient Antenna (ANITA), dryfujący nad Antarktyką balon z anteną wykrywającą promieniowanie kosmiczne, zarejestrował dwa impulsy promieniowania kosmicznego, które... pochodziły z Ziemi. Od tamtej pory zaproponowano szereg wyjaśnień tego zjawiska. Mówiono o sterylnych neutrino i o nietypowym rozkładzie ciemnej materii we wnętrzu Ziemi. Astrofizycy z Penn State University opublikowali artykuł, w którym informują, że to, co zarejestrowała ANITA nie jest jedynym zjawiskiem tego typu. Okazało się, że trzykrotnie podobne impulsy wykryło IceCube, umieszczone w lodzie Antarktyki obserwatorium neutrin. Z artykułu autorstwa Dereka Foxa, Steinna Sigurdsonna i innych dowiadujemy się też, że szansa, iż zaobserwowane zjawisko jest zgodne z Modelem Standardowym wynosi 1/3.500.000. Fox, Sigurdsson i ich koledzy sprawdzili dane z innych detektorów, poszukując w nich sygnałów podobnych do tych, jakie zarejestrowała ANITA. Gdy okazało się, że promieniowanie kosmiczne pochodzące z Ziemi zostało trzykrotnie zarejestrowane przez IceCube, naukowcy zdali sobie sprawę, że wpadli na trop czegoś, co może zmienić współczesną fizykę. To skłoniło mnie do poważnego przyjrzenia się danym z ANITA. Właśnie po to jest się fizykiem. By łamać modele, ustalać nowe stałe, dowiadywać się o świecie czegoś, czego nie wiemy, mówi Fox. Nawet jeśli Model Standardowy świetnie wyjaśnia nam szereg zjawisk, to ma on wiele luk. Na przykład nie pasuje do niego istnienie ciemniej materii, masa neutrino czy asymetria materii i antymaterii we wszechświecie, mówi Seyda Ipek, fizyk cząstek z Uniwersytetu Kalifornijskiego w Irvine. Nadzieją na jakiś przełom w fizyce był Wielki Zderzacz Hadronów. Urządzenie wykryło bozon Higgsa, brakujący element Modelu Standardowego, i na tym się skończyło. Tymczasem fizycy na całym świecie szukają nowych idei, które pozwoliłyby lepiej zrozumieć wszechświat. Teraz część naukowców twierdzi, że artykuł fizyków z Penn State dostarcza solidnych podstaw dających nadzieję, że w końcu w fizyce wydarzy się coś nowego. Od samego początku było jasne, że jeśli wydarzenia zarejestrowane przez ANITA są spowodowane cząstkami, które przebyły tysiące kilometrów przez naszą planetę, to cząstki te z bardzo dużym prawdopodobieństwem nie należą do Modelu Standardowego, stwierdza Mauricio Bustamante, astrofizyk z Uniwersytetu w Kopenhadze. Opublikowany artykuł to pierwsze solidne wyliczenie prawdopodobieństwa, które pokazuje, jak mało możliwe jest, że mamy tu do czynienia z czymś, co zgadza się z Modelem Standardowym, dodaje. Podobnego zdania jest Bill Louis, fizyk neutrino z Los Alamos National Laboratory. Jeśli wspomniane sygnały pochodziłyby od cząstek z Modelu Standardowego, to cząstkami tymi byłyby neutrino. Żadne inna cząstka nie przedostałaby się przez cały przekrój naszej planety. Jednak, jak mówi Louis, neutrino zdolne do przelecenia przez przekrój Ziemi mają tak małą energię, że nie powinny zostać wykryte przez ANITA i IceCube. Te o większych energiach, które mogłyby zostać zarejestrowane, zostałyby wcześniej przechwycone przez Ziemię. Zdaniem Louisa artykuł z Penn State wskazuje, że to, co wywołało zarejestrowane sygnały jest zgodne z teorią o supersymetrii. Zdaniem autorów artykułu, najbardziej prawdopodobnym wyjaśnieniem pojawienia się zarejestrowanych sygnałów jest istnienie sleptonów stau. Wedle teorii o supersymetrii są one supersymetrycznymi partnerami leptonów tau Modelu Standardowego. Louis dodaje, że na obecnym etapie badań tak dokładne wskazanie na konkretne cząstki jest nieco naciągane. Autorzy z Penn State dokonali solidnych obliczeń wskazujących, że najprawdopodobniej żadna znana cząstka nie mogła przebyć Ziemi w taki sposób, jak te zarejestrowane. Jednak wciąż nie ma całkowitej pewności. Na pewno zaś mamy za mało danych, by wskazywać na konkretną cząstkę. Fox zgadza się z tym, co mówi Louis. Jako obserwator nie mam możliwości definitywnego stwierdzenia,  że to stau. Analizowałem dane, próbując dowiedzieć się czegoś nowego o wszechświecie i trafiłem na dziwaczne zjawisko. Potem wraz z kolegami przejrzeliśmy literaturę fachową, by sprawdzić, czy ktoś już tego nie wyjaśnił. Znaleźliśmy artykuły, w tym jeden sprzed 14 lat, których autorzy przewidywali coś podobnego, dodaje. Okazuje się, że niektórzy fizycy teoretycy przewidywali, iż sleptony stau mogą dawać takie właśnie sygnały w detektorach neutrin. Jako, że prace te były pisane na długo zanim ANITA zarejestrowała sygnały, nie można wykluczyć, iż fizycy ci byli na dobrym tropie. Fox nie wyklucza, że jeśli naukowcy pracujący przy IceCube sięgną głębiej do swoich archiwów, to znajdą tam kolejne sygnały, których wcześniej nie zauważono. Louis i Bustamante uważają, że NASA powinna przeprowadzić więcej badań za pomocą ANITA i spróbować zarejestrować kolejne sygnały tego typu. Musimy być pewni, że zjawiska te nie są związane z jakimiś nieznanymi nam czynnikami, na przykład z nierozpoznanymi właściwościami lodu Antarktyki. Potrzebujemy kolejnych instrumentów, które wykryłyby podobne sygnały, mówi Bustamante. Jeśli dokonane dotychczas obserwacje się potwierdzą, może okazać się, że ANITA może mieć większy wkład w naukę niż Wielki Zderzacz Hadronów (LHC). Każdy przypadek zaobserwowania cząstek nienależących do Modelu Standardowego będzie przełomem, gdyż pokaże nam, gdzie mamy poszukiwać fizyki spoza Modelu Standardowego. W LHC bardzo trudno byłoby uzyskać i wykryć cząstki supersymetryczne, stwierdza Ipek. Naukowcy dodają, że dzięki danym z ANITA można będzie ewentualnie tak dostroić LHC by Zderzacz zaczął badań supersymetryczne cząstki. « powrót do artykułu
×
×
  • Dodaj nową pozycję...