Znajdź zawartość
Wyświetlanie wyników dla tagów ' ślad węglowy' .
Znaleziono 2 wyniki
-
Microsoft oznajmił, że ma zamiar nie tylko zredukować zredukować emisję węgla związaną ze swoją działalnością, ale usunie z atmosfery węgiel, który wyemitował w całej swojej historii. Koncern wyznaczył sobie dwa ambitne terminy. Do roku 2030 firma chce tk zmienić sposób swojego działania, że będzie więcej węgla wycofywała z atmosfery niż go emitowała, a do roku 2050 ma zamiar wycofać z atmosfery cały węgiel, jaki w związku z prowadzoną przez siebie działalnością wyemitowała od swojego powstania w 1975 roku. To zdecydowane przebicie zapowiedzi Amazona, który obiecał, że do roku 2040 stanie się firmą neutralną pod względem emisji węgla. "Podczas gdy cały świat potrzebuje zredukować emisję netto do zera, ci z nas, których stać na szybsze i bardziej ambitne działanie, powinni to zrobić. Dlatego dzisiaj ogłaszamy nowy plan zredukowania, a docelowo usunięcia z atmosfery, całej emisji powodowanej przez Microsoft", oświadczył prezes Brad Smith. Koncern oznajmił, że do 2030 roku o ponad połowę zmniejszy zarówno swoją własną emisję jak i całego swojego łańcucha dostaw. Koncern pomoże swoim dostawcom i innym partnerom w redukcji ich śladu węglowego, przeznaczy też miliard dolarów na rozwój technologii związanych z redukcją emisji węgla, jego przechwytywaniem i usuwaniem z atmosfery. Od przyszłego zaś roku będzie wymagał od swoich nowych partnerów, by wdrażali politykę redukcji emisji. Firma zapowiedziała też, że co roku będzie publikowała Environmental Sustainability Report, w którym szczegółowo przedstawi poziom swojej emisji i działania zmierzające do jej zmniejszenia. « powrót do artykułu
-
W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami. Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości. Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie. Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran. Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla. Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3). Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3. Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki. Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania. Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła. Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%. Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej. Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu. Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię. Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych). « powrót do artykułu