Znajdź zawartość
Wyświetlanie wyników dla tagów ' Świerk' .
Znaleziono 3 wyniki
-
Reaktor badawczy MARIA w trybie ekspresowym zmienił harmonogram pracy, by zapobiec brakom w dostawach medycznego molibdenu-99 (Mo-99). Działanie miało związek z usterką w holenderskim reaktorze HFR, który należy do grona kilku światowych dostawców tego radionuklidu. Molibden-99 jest podstawowym radioizotopem służącym do uzyskiwania radioaktywnego technetu. Ten zaś jest wykorzystywany w większości procedur medycyny nuklearnej. Molibden-99 jest produkowany w reaktorach badawczych na drodze napromieniania neutronami tarcz uranowych. W zeszłym tygodniu przed jednym z rutynowych uruchomień reaktora HFR wykryto usterkę w obiegu chłodzenia (przed każdym kolejnym uruchomieniem dokonuje się kontroli wszystkich instalacji). Z tego względu nie można go było uruchomić zgodnie z planem, czyli 20 stycznia. Okazało się jednak, że już 21 stycznia produkcję HFR przejął reaktor MARIA w Otwocku-Świerku pod Warszawą. 20 stycznia byliśmy w Świerku w trakcie spotkania z naszymi partnerami produkującymi medyczny molibden-99, kiedy jednemu z nich zadzwonił telefon - opowiada Paweł Nowakowski, dyrektor Departamentu Eksploatacji Obiektów Jądrowych w Narodowym Centrum Badań Jądrowych (NCBJ). Nasz gość odszedł na chwilę na bok, by odebrać połączenie i po chwili spytał, czy za dwa dni jesteśmy w stanie awaryjnie napromienić dodatkowe tarcze uranowe. Dobro pacjentów onkologicznych jest dla nas niezwykle ważne, więc zgodziłem się bez wahania. Jesteśmy również przygotowani do przeprowadzenia kolejnych napromieniań w najbliższych tygodniach. Jak podkreślono w komunikacie prasowym NCBJ, zespół ekspertów przeprowadził szczegółowe obliczenia optymalizujące konfigurację rdzenia MARII. Później zatwierdziła je Państwowa Agencja Atomistyki. Udało się to zrealizować w zaledwie parę godzin. Zadanie wykonano tak szybko, gdyż od 2010 r. MARIA jest przygotowana do napromieniania tarcz uranowych do produkcji molibdenu-99. W roku przeprowadza się kilka cykli. NCBJ zaznacza, że w razie nieplanowanych przestojów u głównych dostawców reaktor badawczy MARIA może zmienić harmonogram i zapełnić lukę. Warto podkreślić, że MARIA jest jednym z najważniejszych dostawców napromienianych tarcz uranowych do produkcji Mo-99, odpowiedzialnym za około 10% światowych dostaw. « powrót do artykułu
-
- reaktor badawczy MARIA
- Świerk
- (i 7 więcej)
-
Mikrosfery za Świerka pomagają chorym na raka wątroby
KopalniaWiedzy.pl dodał temat w dziale Medycyna
Reaktor MARIA jest jednym z głównych ośrodków napromieniania mikrosfer zawierających radioaktywny holm, które są stosowane w terapii nowotworów wątroby. Technologia opracowana w NCBJ na zlecenie firmy Quirem Medical – globalnego producenta mikrosfer teraperutycznych QuiremSpheres – służy pacjentom w kilkunastu wyspecjalizowanych klinikach w Europie. Mikrosfery o średnicy ok. 30 mikrometrów wykonane z polilaktydu holmu (polimeru kwasu mlekowego) służą do miejscowej radioterapii, głównie w przypadku nowotworów wątroby. Na etapie produkcji umieszcza się w nich stabilny izotop holm-165, który poprzez bombardowanie neutronami można przekształcić w radioaktywny izotop holm-166. Holm-166 ma bardzo przydatne właściwości. Jego czas życia jest stosunkowo krótki (ok. 27 godzin). Rozpadając się, emituje promieniowanie beta o energii ok. 2 MeV, którego zasięg w tkankach wynosi kilka milimetrów. Radioaktywny holm, uwięziony w mikrosferach, podaje się głównie pacjentom z zaawansowanymi nowotworami wątroby, wstrzykując zawiesinę z mikrogranulkami do odpowiednich naczyń krwionośnych prowadzących je do miejsca lokalizacji nowotworu. Promieniowanie beta, działając na dobrze zlokalizowanym obszarze, niszczy komórki rakowe, pozostawiając nietkniętą większość zdrowej części narządu. Procedura ta nazywana jest radioembiolizacją. Stosuje się ją w przypadku nowotworów nieoperacyjnych i niewrażliwych na chemioterapię. Holm ma dwie dodatkowe zalety: emituje także promieniowanie gamma, co pozwala precyzyjnie zlokalizować miejsca i ilości wprowadzonej do organizmu substancji radioaktywnej. Jest też paramagnetykiem, co stwarza dodatkowe możliwości m.in. śledzenia podanego specyfiku w organizmie. Jedyne stosowane obecnie w terapii mikrosfery zawierające holm są wytwarzane i dystrybuowane przez niderlandzką firmę Quirem Medical B.V. jako QuiremSpheres®. W 2017 r. zespół naukowców pracujących w reaktorze MARIA we współpracy z firmą Quirem Medical przystąpił do opracowania technologii napromienia mikrosfer holmowych. Zadanie wymagało dostosowania infrastruktury reaktora, a także wypracowania nowych rozwiązań technologicznych oraz procedur i nowej metodologii napromieniania materiałów tarczowych – opowiada dr inż. Rafał Prokopowicz, Kierownik Zakładu Badań Reaktorowych. Powodem tego jest fakt, że każda fiolka z mikrosferami zawiera naważkę przygotowaną do terapii konkretnego pacjenta i należy ją napromienić w taki sposób, aby w wyznaczonych dniu i godzinie terapii miała odpowiednią aktywność, ustaloną dla danego pacjenta” Każdy materiał podczas napromieniania podgrzewa się od promieniowania. Mikrosfery z poliaktydu są bardzo wrażliwe – ich degradacja może rozpocząć się już po osiągnięciu 60° C. Tymczasem muszą one zachować swój kształt podczas napromieniania, aby mogły swobodnie dostać się do leczonego miejsca po podaniu pacjentowi. „W celu poprawy warunków napromieniania mikrosfer, udoskonaliliśmy układ chłodzenia umieszczanych w reaktorze zasobników z mikrosferami” – wyjaśnia naukowiec. Konieczne było także umieszczenie w rdzeniu reaktora, tuż obok miejsca napromieniania, specjalnych detektorów promieniowania monitorujących cały czas warunki napromieniania. Stworzyliśmy specjalny algorytm i oparty na nim program komputerowy, który na podstawie sygnałów z detektorów ułatwia bardzo precyzyjne wyznaczanie czasu napromieniania poszczególnych zasobników z mikrosferami, tak aby uzyskały one aktywność wymaganą w czasie terapii. Jest to kluczowe narzędzie, niezbędne do prawidłowego napromieniania mikrosfer, ponieważ gęstość strumienia neutronów w reaktorze fluktuuje przez cały czas jego pracy. Naukowcy NCBJ we współpracy z Quirem opracowali także specjalne fiolki do napromieniania mikrosfer. Od nazwy reaktora zostały one nazwane fiolkami typu MARIA. Tajemnicą tych fiolek jest specjalne wyprofilowanie dna, które powoduje, że umieszczony w pojemniku materiał układa się w cienką, stosunkowo dobrze chłodzoną warstwę. Pojemniki plastikowe umieszcza się w zasobnikach metalowych, wprowadzanych później do kanałów pionowych reaktora – wyjaśnia inż. Łukasz Murawski, Kierownik Działu Technologii Napromieniań. Aby zapewnić jeszcze lepsze chłodzenie, we wnętrzu zasobnika powietrze zastępuje się helem. Tak przygotowane zasobniki wędrują pocztą hydrauliczną do miejsca napromieniania, a po odpowiednim czasie napromieniania w ten sam sposób są transportowane do komór gorących, gdzie przepakowywane są do pojemników transportowych. Dalej specjalna firma transportowa przewozi je ekspresowo do szpitala, gdzie czeka już pacjent. Najczęściej są to szpitale niemieckie i niderlandzkie. Czas gra tu wielką rolę, gdyż po upływie jednego dnia aktywność preparatu spada już o połowę. Ponieważ zapotrzebowania na realizację terapii pojawiają się z niewielkim wyprzedzeniem, zespół reaktora niemal przez całą dobę, 7 dni w tygodniu musi być gotowy do błyskawicznego przygotowania i przeprowadzenia napromieniania oraz ekspedycji mikrosfer. Wymaga to zaangażowania i ciągłej gotowości wielu specjalistów. Obecnie w reaktorze MARIA napromienia się fiolki z mikrosferami na potrzeby ponad 100 pacjentów rocznie. Są one wykorzystywane w kilkunastu klinikach rozsianych po całej Europie, m.in. w Roterdamie, Nijmegen, Utrechcie, Dreźnie, Magdeburgu, Jenie, Bazylei, Rzymie, Pizie, Barcelonie, Madrycie, Porto i innych. Od ponad trzech lat reaktor MARIA jest jednym z niewielu, a jednocześnie jednym z głównych miejsc napromieniowywania mikrosfer dla firmy Quirem. W związku z rosnącym zapotrzebowaniem na terapie radioembolizacji z zastosowaniem Ho-166, współpraca ta będzie kontynuowana i rozwijana – zapewnia dr inż. Michał Gryziński, dyrektor Departamentu Eksploatacji Obiektów Jądrowych NCBJ. Mamy nadzieję na wybudowanie przy reaktorze MARIA laboratorium, które pozwoli NCBJ stać się centrum dystrybucji mikrosfer QuiremSpheres w Europie Wschodniej oraz w Polsce, gdzie na razie ta forma terapii nie jest jeszcze dostępna. « powrót do artykułu-
- holm
- nowotwór wątroby
-
(i 4 więcej)
Oznaczone tagami:
-
Duża część radioaktywnego jodu 131 stosowanego w medycynie nuklearnej na świecie jest produkowana w Polsce. Działający w Narodowym Centrum Badań Jądrowych Ośrodek Radioizotopów Polatom eksportuje odczynniki jodowe i gotowe produkty lecznicze do odbiorców na sześciu kontynentach. Izotopy potrzebne do produkcji radiofarmaceutyków powstają w reaktorze badawczym Maria. Preparaty zawierające jod 131 używane są przede wszystkim w terapii i diagnostyce chorób tarczycy. Nadczynność tarczycy produkującej dwa ważne hormony (T3 i T4) to problem ok. 1% ludzi. Choroba powoduje szereg nieprzyjemnych dolegliwości, a w niektórych przypadkach może stanowić zagrożenie dla życia. Choroba może być leczona radioizotopami, poprzez podawanie preparatów z radioaktywnym jodem oraz farmakologicznie lub chirurgicznie. Przewodnik Amerykańskiego Towarzystwa Tarczycy z 2016 r. w 7 na 15 rozważanych sytuacji klinicznych choroby Gravesa-Basedowa, będącej w 50-80% przypadków przyczyną nadczynności tarczycy, wskazuje terapię radioizotopami jako najbardziej wskazaną (w 5 przypadkach, preferuje się interwencję chirurgiczną, a w trzech pozostałych farmakologiczną). Za przeciwwskazania do użycia radiofarmaceutyków uznaje się jedynie ciążę i zapalenie tarczycy. Do terapii radioizotopowej, a także do wcześniejszej diagnostyki zmian chorobowych, wykorzystuje się preparaty zawierające izotopy radioaktywne jodu – przede wszystkim jod 131 o ośmiodniowym czasie połowicznego rozpadu. Jod w naturalny sposób jest gromadzony w tarczycy. Jeśli jest to jod promieniotwórczy, to promieniowanie beta emitowane podczas rozpadów jego jąder, niszczy część komórek tkanki w swoim najbliższym otoczeniu i w ten sposób zmniejsza intensywność produkcji hormonów. Jod 131 otrzymuje się przede wszystkim w reaktorach jądrowych. Najczęściej stosowana technologia polega na napromieniowaniu telluru. Dwutlenek telluru umieszczany jest w specjalnych zasobnikach, które następnie wkładane są do kanałów izotopowych reaktora – wyjaśnia mgr inż. Ireneusz Owsianko, kierownik reaktora badawczego Maria w NCBJ w Świerku. Neutrony pochodzące z reakcji rozszczepienia paliwa jądrowego (U235) w reaktorze, są absorbowane przez jądra telluru 130. Powstały tellur 131 w ciągu kilkudziesięciu minut rozpada się do jodu 131 poprzez rozpad beta. Proces napromieniania materiału trwa kilka dni, przy czym czas ten dobierany jest tak, by osiągnąć możliwie najbardziej optymalne nasycenie jodu. Otrzymany materiał jest silnie promieniotwórczy. Przeładowujemy go w komorach izotopowych do specjalnych pojemników i tak przygotowany wędruje kilkaset metrów dalej do naszego Ośrodka Radioizotopów Polatom, gdzie jest poddawany dalszej obróbce. OR Polatom jest koordynatorem i gospodarzem całego procesu wytwarzania produktów zawierających jod 131 w NCBJ w Świerku. Zajmuje się przygotowaniem materiału do napromieniania, a następnie wyodrębnianiem jodu z napromieniowanego materiału i nadawaniem mu użytkowych form w postaci odczynników chemicznych i finalnych preparatów radiofarmaceutycznych, a także sprzedażą do odbiorców na sześciu kontynentach. Jod wytworzony w reaktorze oddzielamy od pozostałości dwutlenku telluru w procesie sublimacji - opisuje dr Dariusz Socha, dyrektor OR Polatom. Większość uzyskanego radioaktywnego jodu 131 przekształcamy do postaci jodku sodu i w głównie tej formie dostarczany jest klientom. Służy on jako prekursor do wytwarzania radiofarmaceutyków w krajach odbiorców. Produkujmy także gotowe produkty lecznicze stosowane zarówno w zaawansowanej diagnostyce, jak i terapii. NCBJ jest ważnym światowym dostawcą jodu 131 i producentem radiofarmaceutyków, które go zawierają. Nasza tygodniowa produkcja jodu 131 zapewnia dawki terapeutyczne i diagnostyczne dla pół miliona pacjentów – podkreśla mgr inż. Krzysztof Bańko, zastępca dyrektora OR Polatom ds. handlowych. Jesteśmy głównym producentem: dostarczamy na rynek światowy mniej więcej tyle jodu, ile w sumie dostarczają trzy pozostałe największe firmy. W całości zaspokajamy polskie zapotrzebowanie na gotowe preparaty jodowe, choć oczywiście dostawy na polski rynek to tylko część naszej produkcji. Niesłychanie ważną okolicznością w produkcji i dystrybucji jodu, jest fakt, że czas połowicznego rozpadu jodu 131 wynosi zaledwie 8 dni. Krótki czas rozpadu izotopu to bardzo dobra okoliczność dla pacjentów, gdyż źródła niszczącego promieniowania wprowadzonego do ich organizmów szybko tracą aktywność – wyjaśnia dyrektor Bańko. Jednocześnie jest to duże wyzwanie dla producentów i lekarzy, gdyż preparaty promieniotwórcze muszą być podane pacjentom w ciągu kilku dni od ich produkcji, a ich aktywność przypadająca na konkretny dzień musi być precyzyjnie znana. Radiofarmaceutyki tym różnią się od leków takich jak aspiryna, że nie można zgromadzić ich zapasów. Nasze produkty na bieżąco są rozwożone samolotami do odbiorców na obu półkulach. Produkcja musi odbywać się w sposób ciągły, a kilka tygodni ewentualnego przestoju oznacza, że kilka milionów pacjentów na całym świecie nie dostanie w tym czasie swoich leków. Jod 131 nie jest jedynym radioizotopem produkowanym w reaktorze Maria. NCBJ jest także m.in. znaczącym producentem izotopu molibdenu wykorzystywanego do otrzymywania technetu - najpopularniejszego pierwiastka stosowanego w medycynie nuklearnej. Nie wszystkie izotopy mające znaczenie medyczne można otrzymać w reaktorze. Niektóre powstać mogą jedynie poprzez napromienianie odpowiednich materiałów wiązkami cząstek naładowanych, takich jak protony, jądra deuteru czy cząski alfa. W zeszłym roku rozpoczęliśmy realizację projektu CERAD dofinansowanego ze środków Unii Europejskiej - mówi prof. Krzysztof Kurek, dyrektor NCBJ. W Świerku powstanie nowe centrum badawczo-produkcyjne radiofarmaceutyków wyposażone w cyklotron pozwalający nam otrzymywać dotychczas niedostępne izotopy. Będziemy mogli wytwarzać między innymi jod 123, którego czas połowicznego rozpadu wynosi zaledwie pół dnia i dlatego jest zalecany w przypadku chorób tarczycy u dzieci. Nasz Ośrodek Radioizotopów już dziś produkuje radiofarmaceutyki zawierające ten izotop, ale na razie prekursory do jego produkcji musimy sprowadzać z Niemiec. Działania na rzecz ochrony zdrowia to ważny obszar pracy NCBJ. Jesteśmy instytutem badawczym więc naszym zadaniem jest także opracowywanie nowych radiofarmaceutyków – uzupełnia profesor Kurek. Od lat to robimy, a laboratoria CERAD będą dla nas nieocenioną pomocą. Wygraliśmy też wraz z partnerami konkurs na prowadzenie interdyscyplinarnych studiów doktoranckich Radiofarmaceutyki dla ukierunkowanej molekularnie diagnostyki i terapii medycznej. Pierwsi studenci będą mogli rozpocząć naukę w nowym roku akademickim. Pod koniec czteroletnich studiów CERAD będzie już na nich czekał. « powrót do artykułu
-
- NCBJ
- medycyna nuklearna
-
(i 2 więcej)
Oznaczone tagami: