Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  

Recommended Posts

W serwisie eBay pojawiły się 12-rdzeniowe serwerowe procesory AMD Opteron 6174. Układy sprzedaje firma Oakville Mehlville Computers, która produkuje na zamówienie wysokowydajne serwery i stacje robocze. Opterony 6174 nie są jeszcze oficjalnie rozprowadzane, ale, jak twierdzi serwis X-bit laboratories, sprzedawane przez amerykańską firmę kości nie wyglądają na próbki inżynieryjne. Niewykluczone, że są one częścią pierwszej dostawy nowych Opteronów, które trafiły do klientów AMD.

Opteron 6174 wyposażony jest w 12 megabajtów zunifikowanej pamięci cache trzeciego poziomu oraz 6 megabajtów (po 512 kB na rdzeń) pamięci L2. Korzysta on z rdzeni Magny-Cours, wbdudowanego kontrolera czterokanałowych pamięci DDR3 1333 MHz. Kości taktowane są zegarem 2,20 GHz.

Cena wywoławcza kompletu czterech procesorów wynosi 6500 USD. Cenę "kup teraz" ustalono na poziomie 8000 dolarów. Jeśli zamiast samodzielnego zakupu poszczególnych komponentów wolimy kupić gotowy serwer, to w ofercie Oakville Mehlville Computers znajdziemy czteroprocesorową maszynę z Opteronami 6174 w cenie 20 000 dolarów.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Na MIT powstał nowoczesny mikroprocesor z tranzystorami z nanorurek węglowych. Urządzenie można wyprodukować za pomocą technik używanych obecnie przez przemysł półprzewodnikowy, co ma olbrzymie znaczenie dla ewentualnego wdrożenia.
      Nanorurki węglowe są od dawna przedmiotem zainteresowań, gdyż dają nadzieję na zbudowanie kolejnej generacji komputerów po tym, gdy układów krzemowych nie będzie można już miniaturyzować. Tranzystory polowe z nanorurek węglowych (CNFET) mogą mieć bardzo obiecujące właściwości. Z dotychczasowych badań wynika, że powinny być one około 10-krotnie bardziej efektywne pod względem zużycia energii i pozwolić na przeprowadzanie obliczeń ze znacznie większą prędkością. Problem jednak w tym, że przy masowej produkcji w nanorurkach pojawia się tak wiele defektów, że nie można ich w praktyce wykorzystać.
      Naukowcy z MIT opracowali nową technikę, która znacząco zmniejsza liczbę defektów i daje pełną kontrolę nad produkcję CNFET. Co ważne, technika ta wykorzystuje procesy już używane w przemyśle półprzewodnikowym. Dzięki niej na MIT wyprodukowano 16-bitowy mikroprocesor składający się z 14 000 CNFET, który jest w stanie wykonywać te same obliczenia co tradycyjny procesor.
      Nowy procesor oparto na architekturze RISC-V. Testy wykazały, że jest on zdolny do wykonania pełnego zestawu instrukcji dla tej technologii.
      To, jak dotychczas, najbardziej zaawansowany chip wykonany w nowym procesie nanotechnologicznym, który daje nadzieję na wysoką wydajność i efektywność energetyczną, mówi współautor badań, profesor Max M. Shulaker. Krzem ma swoje ograniczenia. Jeśli chcemy coraz szybszych komputerów, to węglowe nanorurki są najbardziej obiecującym materiałem. Nasze badania pokazują zupełnie nowy sposób budowy układów scalonych z węglowymi nanorurkami.
      Shulaker i jego zespół od dawna pracują nad układami scalonymi z CNFET. Przed sześcioma laty byli w stanie zaprezentować procesor złożony ze 178 CNFET, który mógł pracować na pojedynczym bicie danych. Od tamtego czasu uczeni skupili się na rozwiązaniu trzech kluczowych problemów: defektach materiałowych, niedociągnięciach produkcyjnych oraz problemach funkcjonalnych.
      Największym problemem było uzyskanie nanorurek odpowiedniej jakości. Żeby CNFET działał bez zakłóceń, musi bez problemów przełączać się pomiędzy stanem 0 i 1, podobnie jak tradycyjny tranzystor. Jednak zawsze podczas produkcji powstanie jakaś część nanorurek, które będą wykazywały właściwości metalu, a nie półprzewodnika. Takie nanorurki czynią CNFET całkowicie nieprzydatnym. Zaawansowane układy scalone, by być odpornymi na obecność wadliwych nanorurek i móc szybko wykonywać zaawansowane obliczenia, musiałyby korzystać z nanorurek o czystości sięgającej 99,999999%. Obecnie jest to niemożliwe do osiągnięcia.
      Naukowcy z MIT opracowali technikę nazwaną DREAM (designing resilency against metallic CNT), która tak pozycjonuje metaliczne CNFET, że nie zakłócają one obliczeń. Dzięki temu zmniejszyli wymagania dotyczące czystości nanorurek aż o cztery rzędy wielkości. To zaś oznacza, że do wyprodukowania w pełni sprawnego układu potrzebują nanorurek o czystości sięgającej 99,99%, a to jest obecnie możliwe.
      Uczeni przeanalizowali różne kombinacje bramek logicznych i zauważyli, że metaliczne nanorurki węglowe nie wpływają na nie w ten sam sposób. Okazało się, że pojedyncza metaliczna nanorurki w bramce A może uniemożliwić komunikację pomiędzy nią, a bramką B, ale już liczne metaliczne nanorurki w bramce B nie wpływają negatywnie na jej możliwości komunikacji z żadną bramką. Przeprowadzili więc symulacje, by odnaleźć wszystkie możliwe kombinacje bramek, które byłyby odporne na obecność wadliwych nanorurek. Podczas projektowania układu scalonego brano pod uwagę jedynie te kombinacje. Dzięki technice DREAM możemy po prostu kupić komercyjne dostępne nanorurki, umieścić je na plastrze i stworzyć układ scalony, nie potrzebujemy żadnych specjalnych zabiegów, mówi Shulaker.
      Produkcja CNFET rozpoczyna się od nałożenia znajdujących się w roztworze nanorurek na podłoże z predefiniowanym architekturą układu. Jednak nie do uniknięcia jest sytuacja, w której część nanorurek pozbija się w grupy, tworząc rodzaj dużych cząstek zanieczyszczających układ scalony. Poradzono sobie z tym problemem tworząc technikę RINSE (removal of incubated nanotubes through selective exfoliation). Na podłoże nakłada się wcześniej związek chemiczny, który ułatwia nanorurkom przyczepianie się do niego. Następnie, już po nałożeniu nanorurek, całość pokrywana jest polimerem i zanurzana w specjalnym rozpuszczalniku. Rozpuszczalnik zmywa polimer, a ten zabiera ze sobą pozbijane w grupy nanorurki. Te zaś nanorurki, które nie zgrupowały się z innymi, pozostają przyczepione do podłoża. Technika ta aż 250-kronie zmniejsza zagęszczenie zbitek nanorurek w porównaniu z alternatywnymi metodami ich usuwania.
      Poradzono sobie też z ostatnim problemem, czyli wytworzeniem tranzystorów typu N i typu P. Zwykle produkcja tych tranzystorów z węglowych nanorurek kończyła się uzyskaniem urządzeń o bardzo różniącej się wydajności. Problem rozwiązano za pomocą nowej techniki o nazwie MIXED (metal interface engineering crossed with electrostatic doping), dzięki której możliwe jest precyzyjna optymalizacja procesorów do wymaganych zadań. Technika ta polega na dołączeniu do każdego tranzystora, w zależności czy ma być on P czy N, odpowiedniego metalu, platyny lub tytanu. Następnie tranzystory są pokrywane tlenkiem, co pozwala na ich dostosowanie do zadań, jakie będą spełniały. Można więc osobno dostroić je do pracy w zastosowaniach w wysoko wydajnych serwerach, a osobno do energooszczędnych implantów medycznych.
      Obecnie, w ramach programu prowadzonego przez DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych), wspomniane techniki produkcji układów scalonych z węglowych nanorurek wdrażane są w fabrycznych liniach produkcyjnych. W tej chwili nikt nie potrafi powiedzieć, kiedy w sklepach pojawią się pierwsze procesory z CNFET. Shulaker mówi, że może się to stać już w ciągu najbliższych pięciu lat. Sądzimy, że teraz to już nie jest pytanie czy, ale pytanie kiedy, mówi uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Firma Adapteva ogłosiła, że wkrótce zacznie produkować próbną wersję 64-rdzeniowego procesora wykonanego w technologii 28 nanometrów. Układ E64G4 korzysta z technologii Epiphany, która została stworzona pod kątem takich zastosowań jak rozpoznawanie mowy czy przetwarzanie grafiki.
      Adapteva specjalizuje się w tworzeniu aplikacji na rynek finansowy, wojskowy i inżynieryjny, teraz zaś chce zaistnieć na rynku urządzeń przenośnych.
      W firmę zainwestowano zaledwie 2 miliony dolarów, teraz przygotowuje ona swój czwarty układ scalony i wkrótce przestanie przynosić straty. Andreas Olofsson, założyciel i szef Adaptevy mówi, że mimo iż same maski litograficzne kosztują miliony dolarów, to przedsiębiorstwo może działać, gdyż wybrało model multiproject wafer (MPW), w którym koszty masek podzielone są pomiędzy klientów firmy. Ponadto Adapteva działa na rynkach, na których produkuje się niewielkie serie drogich układów. Pojedynczy procesor może kosztować nawet 1000 dolarów.
      Od lata 2011, kiedy to Adapteva wyprodukowała swój pierwszy układ scalony, 16-rdzeniowy procesor wykonany w technologii 65 nanometrów, wpływy przedsiębiorstwa wyniosły milion dolarów.
      Obecnie ma powstać czwarta generacja układu Epiphany. Kość będzie składała się z 64 rdzeni RISC, z których każdy zostanie wyposażony w 32 kilobajty pamięci podręcznej. Całość zmieści się na powierzchni 8,2 mm2 i będzie, jak twierdzi Adapteva, najbardziej efektywnym energetycznie układem scalonym. Jego wydajność ma wynieść 70 GFlops/wat.
      Kość taktowana będzie zegarem o częstotliwości do 700 MHz.
      Ambicje firmy jednak się na tym nie kończą. Architektura Epiphany ma umożliwić produkcję procesora składającego się z 4096 rdzeni.
      Układy na zamówienie Adaptevy są produkowane w fabrykach Globalfoundries.
    • By KopalniaWiedzy.pl
      HP ma zamiar stworzyć do 2017 roku 256-rdzeniowy procesor Corona, którego rdzenie będą komunikowały się ze sobą za pomocą łączy optycznych. Taka kość miałaby wykonywać 10 biliardów operacji zmiennoprzecinkowych na sekundę, zatem wydajność pięciu układów dorównywałaby wydajności współczesnych superkomputerów. Poszczególne rdzenie wymieniałyby dane z prędkością 20 terabitów na sekundę, a komunikacja między procesorem a pamięcią odbywałaby się z prędkością 10 Tb/s. Co więcej Corona zużywałaby znacznie mniej energii niż współczesne układy, dzięki czemu superkomputerom łatwiej będzie pokonać barierę eksaflopsa (1018 operacji zmiennoprzecinkowych na sekundę).
      Obecnie istnieją dwa główne problemy, które znacznie utrudniają zwiększanie wydajności układów scalonych w dotychczasowym tempie. Im więcej rdzeni w procesorze, tym trudniej jest koordynować ich pracę i komunikować je ze sobą. Bardzo trudno jest uzyskać układ posiadający więcej niż 16 rdzeni, który pracowałby jak procesor równoległy. Drugi poważny problem to olbrzymi pobór mocy, który ma miejsce podczas przesyłania danych od i do układów pamięci.
      Obie te przeszkody można rozwiązać za pomocą zintegrowanej fotoniki, czyli laserów i łączy optycznych wbudowanych w układ scalony. Przykładem takiej kości może być zaprezentowany właśnie przez IBM-a Holey Optochip. Nad podobnymi rozwiązaniami pracują też Intel (projekt Runnemede), Nvidia (Echelon), Sandia National Laboratory (X-calibur) czy MIT (Angstrom).
      Najważniejszą jednak rolę odgrywa zintegrowana fotonika w projekcie Corona. Problem w tym, że część potrzebnej technologii wciąż jeszcze nie została opracowana. Jednak co się powoli zmienia. Od dłuższego już czasu informujemy o postępach na tym polu. Przez ostatnie lata wiele firm pracowało nad poszczególnymi podzespołami, teraz zaczęto łączyć je w układy. To jak przejście od tranzystora do układu scalonego - stwierdził Marco Fiorentino z HP Labs.
      HP ma zamiar w każdy rdzeń Corony wbudować laser, który będzie wysyłał informacje do wszystkich innych rdzeni. Jak obliczają specjaliści wykorzystanie elektroniki do stworzenia 10-terabitowego kanału przesyłu danych pomiędzy CPU a pamięcią wymagałoby 160 watów mocy. Zdaniem HP, jeśli zastąpimy elektronikę zintegrowaną fotoniką, pobór mocy spadnie do 6,4 wata.
      Zmniejszenie poboru mocy to dla superkomputerów niezwykle istotna sprawa. Najpotężniejsza maszyna na świecie, japoński K Computer, potrzebuje obecnie do pracy 12,6 MW. Jego wydajność wynosi 10,5 PFlops, trzeba by ją zatem zwiększyć niemal 100-krotnie by osiągnąć barierę eksaflopsa.
      Zintegrowana fotonika przyczyni się również do obniżenia poboru mocy przez serwery i urządzenia telekomunikacyjne, co odgrywa olbrzymią rolę w internecie, którym przesyłamy coraz większą ilość danych. Z czasem lasery i łącza optyczne mogą trafić też do urządzeń przenośnych, pozwalający na ich dłuższą pracę bez potrzeby ładowania baterii. Również, co niezwykle istotne, w fotonice nie występuje problem interferencji elektromagnetycznej, zatem jej stosowanie np. w samochodach czy samolotach będzie bezpieczniejsze niż stosowanie urządzeń elektronicznych.
      Problemem jest też stworzenie miniaturowych laserów, które można będzie budować za pomocą dostępnych technologii. Jako, że z krzemu nie można generować światła, specjaliści badają inne materiały, przede wszystkim arsenek galu i fosforek indu. Ostatnio MIT zainteresował się też germanem.
      Trwają również intensywne prace nad rozwojem technologii TSV (through silicon vias). Pozwoli się ona pozbyć szyn, za pomocą których łączą się ze sobą poszczególne układy. Szyny stanowią dla danych wąskie gardło i zużywają sporo energii. TSV pozwala układać na sobie układy scalone (powstają w ten sposób układy 3D) i łączyć je kablami poprowadzonymi wewnątrz takiego stosu układów, co zwiększa przepustowość, a jednocześnie zmniejsza zużycie prądu i pozwala na zaoszczędzenie miejsca na płycie głównej.
      W projekcie Corona HP chce połączyć obie technologie - 3D i zintegrowaną fotonikę. Dzięki temu ma powstać 256-rdzeniowy procesor zbudowany z 64-rdzeniowych klastrów. Całość zostanie wykonana w procesie 16 nanometrów i będzie połączona łączami optycznymi.
    • By KopalniaWiedzy.pl
      Liczne źródła informują, że Sony pracuje nad konsolą PlayStation 4 i nie ma zamiaru wykorzystywać w niej ani procesora Cell ani żadnego układu na nim opartego. Nie wiadomo, jaki procesor miałby znaleźć się w przyszłej konsoli. Plotka głosi, że japoński koncern porzuci układy graficzne Nvidii i będzie korzystał z rozwiązań AMD.
      Cell jest dzieckiem Kena Kutaragi, twórcy PlayStation, i był produkowany wspólnie przez Sony, Toshibę i IBM-a. Kutaragi opuścił jednak Sony, więc firma postanowiła zrezygnować z tego układu. Informacja taka powinna ucieszyć developerów, którzy skarżyli się, że Cell jest trudny w oprogramowaniu.
      Z procesorem tym wiązano niegdyś olbrzymie nadzieje, spodziewano się, że trafi do serwerów i urządzeń medycznych. Ambitne plany nigdy nie zostały zrealizowane, a sam procesor w dużej mierze przyczynił się do niepowodzenia PlayStation 3. Konsola, której poprzednie wersje były największymi przebojami w swojej kategorii, sprzedaje się gorzej niż urządzenia konkurencji.
      Przed wszystkimi twórcami konsoli, nie tylko przed Sony, stoi trudne wyzwanie. Twórcy najnowszej generacji wykorzystywanego w wielu grach silnika Unreal twierdzą bowiem, że najnowsze konsole będą musiały być co najmniej 10-krotnie bardziej wydajne niż PS3 czy Xbox 360.
    • By KopalniaWiedzy.pl
      Specjaliści ostrzegają, że 8 marca część użytkowników internetu mogą czekać poważne kłopoty. Właśnie na ten dzień FBI zapowiedziało wyłączenie swoich serwerów, które zastąpiły serwery przestępców, kierujących użytkowników na złośliwe witryny.
      W listopadzie FBI zlikwidowało botnet DNSChanger. Jego twórcy infekowali komputery i manipulowali adresami internetowymi tak, że użytkownicy trafiali na witryny, których jedynym celem było wyświetlanie reklam. FBI zastąpiło serwery przestępców własnymi maszynami, dzięki czemu komputery zainfekowane przez botnet mogły bez przeszkód łączyć się z internetem. Ponadto FBI było w stanie zidentyfikować zarażone maszyny.
      Jednak Biuro z góry założyło, że zastępcze serwery będą działały tylko przez jakiś czas, by użytkownicy komputerów zarażonych DNSChangerem mieli czas na wyczyszczenie komputerów ze szkodliwego kodu. „Zastępcza sieć“ FBI ma zostać wyłączona właśnie 8 marca. Oznacza to, że komputery, które nadal są zarażone, stracą dostęp do internetu, gdyż będą usiłowały łączyć się z nieistniejącymi serwerami DNS.
      Eksperci ostrzegają, że wiele komputerów wciąż nie zostało wyczyszczonych ze szkodliwego kodu. Z danych firmy ID wynika, że co najmniej 250 z 500 największych światowych firm oraz 27 z 55 największych amerykańskich instytucji rządowych używa co najmniej jednego komputera lub routera zarażonego DNSChangerem. Nieznana jest liczba indywidualnych użytkowników, którzy mogą mieć kłopoty.
      Zespół odpowiedzialny w FBI za zwalczanie DNSChangera rozważa przedłużenie pracy serwerów. Jednak nawet jeśli nie zostaną one wyłączone 8 marca, to niewiele się zmieni. Internauci, zarówno prywatni jak i instytucjonalni, nie dbają o to, co dzieje się z ich komputerami. Można tak wnioskować chociażby z faktu, że największa liczba skutecznych ataków jest przeprowadzonych na dziury, do których łaty istnieją od dawna, jednak właściciele komputerów ich nie zainstalowali. Przykładem takiej walki z wiatrakami może być historia robaka Conficker, który wciąż zaraża miliony maszyn, mimo, że FBI od 2009 roku prowadzi aktywne działania mające na celu oczyścić zeń internet.
      Ponadto, jeśli FBI nie wyłączy swoich serwerów, to DNSChanger nadal będzie groźny. Robak uniemożliwia bowiem pobranie poprawek, co oznacza, że niektóre z zarażonych nim maszyn nie były aktualizowane od wielu miesięcy, a to wystawia je na jeszcze większe niebezpieczeństwo.
      Firmy, które chcą sprawdzić, czy ich komputery zostały zarażone DNSChangerem powinny skontaktować się z witryną DNS Changer Working Group. Użytkownicy indywidualni mogą skorzystać z narzędzia do sprawdzenia komputera.
×
×
  • Create New...