Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

"Syntetyczna marihuana" nie leczy alzheimeryzmu

Recommended Posts

Nadzieje związane z zastosowaniem syntetycznego analogu marihuany jako środka spowalniającego lub odwracającego przebieg choroby Alzheimera najprawdopodobniej okażą się płonne. Badacze z University of British Columbia oraz Vancouver Coastal Health Research Institute opublikowali właśnie badania nad wpływem syntetycznego odpowiednika substancji aktywnych zawartych w marihuanie. Wynika z nich, że środek ten nie ma oczekiwanego wpływu na przebieg schorzenia

Eksperymentalny lek, noszący roboczą nazwę HU210, testowano na zmodyfikowanych genetycznie myszach obarczonych mutacją w przeniesionej do ich genomu sekwencji ludzkiego DNA determinującej rozwój choroby Alzheimera. Niestety, prowadzącym eksperyment badaczom nie udało się wykazać korzystnego wpływu testowanego środka na zdrowie zwierząt.

Jako badacze zaczynamy każde badania z nadzieją, że będziemy w stanie potwierdzić korzystny wpływ potencjalnych terapii; podobną nadzieję mieliśmy w przypadku zastosowania "medycznej marihuany" do leczenia choroby Alzheimera, tłumaczy główny autor studium, dr Weihong Song. Ale nie zauważyliśmy zupełnie żadnego pożytku. Zamiast tego, nasze badanie wykazało nawet pewne niekorzystne efekty.

Uzyskane wyniki są szczególnie przytłaczające w świetle danych zebranych podczas wcześniejszych badań. Naukowcy sprawdzali wówczas, czy HU210 poprawia stan zdrowia u szczurów wytwarzających nadmierną ilość amyloidu - białka, którego ilość w mózgu wzrasta w przebiegu alzheimeryzmu. Okazało się wówczas, że testowany środek jest w stanie obniżyć zawartość patologicznej proteiny. Jeżeli jednak uwzględni się fakt, że zespół dr Song prowadził badania na jednym z najwierniejszych dostępnych zwierzęcych modeli alzheimeryzmu, szanse na rozpoczęcie testów HU210 na ludziach wydają się nikłe.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Kontakt z marihuaną w wieku nastoletnim może ułatwiać uzależnienie się od kokainy. Naukowcy z Columbia University i włoskiego Uniwersytetu w Cagliari jako pierwsi przeprowadzili badania na poziomie molekularnym obserwując, jak wczesne wystawienie na działanie marihuany wpływa na późniejszą reakcję mózgu na kontakt z kokainą.
      W ramach badań na gryzoniach uczeni obserwowali, jakie zmiany zachodzą w mózgach młodych (odpowiadających nastoletnim ludziom) i dorosłych osobników. I jednym i drugim podawano syntetyczne kannabinoidy, a następnie kokainę. Naukowcy zaobserwowali, że po podaniu narkotyków w mózgach młodych zwierząt – ale nie dorosłych – dochodziło do zmian molekularnych i epigenetycznych. Odkrycie pozwala dokładniej przyjrzeć się temu, w jaki sposób używanie kannabinoidów w wieku nastoletnim może zwiększyć podatność na kokainę i ułatwiać uzależnienie od tego narkotyku.
      Nasze badania na szczurach są pierwszymi, podczas których zmapowano epigenetyczny i molekularny mechanizm, za pomocą którego kokaina oddziałuje na mózgi już wcześniej wystawione na działanie kannabinoidów. To daje nam lepsze pojęcie na temat biologicznych podstaw mechanizmów, które mogą zwiększać ryzyko nadużywania i uzależnienia się od narkotyków, mówi współautor badań, laureat nagrody Nobla, doktor Eric Kandel.
      Nie od dzisiaj wiadomo, że ludzie – i zwierzęta – różnie reagują na pierwszy kontakt z narkotykiem, a ta pierwsza reakcja pozwala przewidzieć dalsze zachowanie. Na przykład, jeśli pierwsze zetknięcie się człowieka z kokainą będzie odczuwane pozytywnie, to z większym prawdopodobieństwem ponownie zażyje on kokainę, czas do drugiego zażycia będzie krótszy i z większym prawdopodobieństwem się uzależni, czytamy w artykule opublikowanym na łamach PNAS.
      Mamy też coraz więcej dowodów łączących używanie kannabinoidów w wieku nastoletnim ze zwiększonym ryzykiem późniejszego używania kokainy oraz ze zwiększonym jej oddziaływaniem na człowieka. Również testy na zwierzętach pokazały, że kannabinoidy mogą uwrażliwiać na kokainę. Zwierzęta, które zetknęły się z kannabinoidami częściej samodzielnie podają sobie kokainę.
      Z badań epidemiologicznych wiemy, że wiele osób, które są uzależnione od kokainy, wcześniej używały marihuany, a ich pierwsze doświadczenie z narkotykami może mieć olbrzymi wpływ na to, czy będą ich nadal używali. Jednak wiele pytań pozostaje bez odpowiedzi. Dotyczą one na przykład wpływu konopi na mózg, mówi współautorka badań, doktor Denise Kandel. Dotychczas dysponowaliśmy danymi behawioralnymi, jednak nie mieliśmy neurobiologicznych dowodów wskazujących, że kannabinoidy mogą wpływać na reakcję mózgu na zetknięcie się z kokainą.
      Dotychczasowe badania ujawniły chemiczną stronę wpływu obu narkotyków na mózg. Badania nad uzależniającymi właściwościami kokainy koncentrowały się na mezolimbicznym szlaku dopaminergicznym. Odgrywa on ważną rolę w odczuwaniu nagrody i przyjemności. Jako, że marihuana zwiększa aktywność tego szlaku w sposób podobny do kokainy, wpływa też na cały rozległy system neurochemiczny zwany układem endokannabinoidowym. To kluczowy system dla rozwoju mózgu, który to proces wciąż trwa w wieku nastoletnim, dodaje doktor Philippe Melas.
      W ostatnich latach pojawiły się badania wskazujące, że rozwój uzależnienia od kokainy ma związek z układ glutaminianergiczny, a z kolei marihuana wpływ na przebieg sygnałów w tym układzie. Dlatego też włosko-amerykański zespół naukowy postanowił zbadać potencjalny związek pomiędzy oboma narkotykami. Uczeni sprawdzali, jak mózgi szczurów reagują najpierw na podanie syntetycznego kannabinoidu WIN, a następnie na podanie kokainy.
      Okazało się, że mózgi młodych szczurów, którym podano WIN mocniej reagowały na pierwszy kontakt z kokainą, niż mózgi szczurów, które z WIN się nie zetknęły. Co istotne, zjawisko to zaobserwowaliśmy u młodych szczurów, ale nie u dorosłych, mówi Melas. Gdy uczeni bliżej przyjrzeli się temu zagadnieniu, okazało się, że gdy młode szczury zetknęły się z kannabinoidem, to sposób, w jaki działała na nie następnie kokaina był związany z kluczowymi zmianami molekularnymi. Dotyczyły one zarówno zmian w receptorach glutaminergicznych, jak i znaczących zmian epigenetycznych.
      Co ciekawe, zespół z Columbia Univeristy wcześniej prowadził podobne badania nad epigenetycznymi zmianami dotyczącymi reakcji dorosłych mózgów na kontakt z nikotyną i alkoholem. Zmiany takie zaobserwowano. Tym razem jednak okazało się, że w przypadku marihuany zmiany takie zachodzą tylko w młodych mózgach. Występują one w korze przedczołowej, która odgrywa kluczową rolę w takich zadaniach jak planowanie długoterminowe czy samokontrola i jest jednym z ostatnich obszarów mózgu, który osiąga dojrzałość.
      Wyniki najnowszych badań sugerują, że wystawienie wciąż rozwijającego się mózgu na działanie kannabinoidu wpływa na wywoływaną przez kokainę hiperacetylację histonów w dorosłej korze przedczołowej. Jako, że acetylacja histonów zwiększa dostępność do chromatyny, powstało pytanie, czy zmiany obserwowane w młodym mózgu przekładają się na szeroką dostępność do chromatyny. Okazało się, że hiperacetylacja histonów nie prowadziła do ogólnych szerokich zmian w dostępności do chromatyny w skali całego genomu. Okazało się jednak, że powoduje to zwiększony dostęp do chromatyny i alternatywny splicing niektórych genów.
      W podsumowaniu badań naukowcy stwierdzili, że wystawienie na działanie kannabinoidów w wieku nastoletnim prowadzi do zmian w ekspresji genów wywołanych oddziaływaniem kokainy, pojawieniem się alternatywnego splicingu w genach powiązanych z receptorami neuroprzekaźników oraz zwiększonym wpływem kokainy na fosforylację protein. Innymi słowy, używanie marihuany w wieku nastoletnim większa prawdopodobieństwo, że pierwsze doświadczenie takiej osoby z kokainą będzie pozytywne, co z kolei może wzmocnić jej predyspozycję do używania i uzależnienia się od kokainy.

      « powrót do artykułu
    • By Szkoda Mojego Czasu
      Przepraszam, że nie w temacie, ale chyba powinniśmy się zacząć poważnie bać "ekspertów" od zdrowia publicznego.  Poniżej wypowiedź jednego, a jeszcze niżej wykres jak  naprawdę wygląda ilość już wykrytych mutacji w stosunku do innych wirusów.
      "Profesor odniósł się również do doniesień na temat mutowania koronawirusa SARS-CoV-2: - Ten wirus mutuje bardzo niewiele, jest relatywnie stały, nie zaskakuje nas i na razie niczym nie grozi. Zmiany w mutacji są bardzo niewielkie - powiedział. Horban porównał też SARS-CoV-2 do wirusa grypy. Ten drugi mutuje znacznie szybciej i "właściwie to jest co roku nowy wirus i nie jesteśmy w stanie zrobić szczepionki, która zabezpieczy nas raz na zawsze".

    • By KopalniaWiedzy.pl
      Badania na myszach, których wyniki ukazały się właśnie w piśmie JNeurosci, wskazują, że dieta suplementowana ciałami ketonowymi (ich estrami) może ochronić neurony przed śmiercią w przebiegu choroby Alzheimera (ChA).
      Na wczesnych etapach ChA mózg staje się nadmiernie pobudzony, być może przez utratę hamujących GABA-ergicznych neuronów wstawkowych (interneuronów). Ponieważ interneurony potrzebują więcej energii w porównaniu do innych neuronów, wydają się bardziej podatne na obumieranie podczas ekspozycji na beta-amyloid (wcześniej wykazano, że beta-amyloid uszkadza mitochondria, czyli centra energetyczne komórki, oddziałując na sirtuinę 3, SIRT3).
      Zespół dr Aiwu Cheng z amerykańskiego Narodowego Instytutu Starzenia genetycznie obniżył poziom SIRT3 w mysim modelu alzheimera. Zaobserwowano, że gryzonie z niskim poziomem sirtuiny 3 cechował o wiele wyższy wskaźnik śmiertelności (zarówno samce, jak i samice umierały przedwcześnie przed 5. miesiącem życia) oraz nasilone obumieranie interneuronów. Zwierzęta te miały też gwałtowne drgawki; porównań dokonywano do standardowego mysiego modelu ChA oraz do myszy z grupy kontrolnej.
      Co istotne, okazało się, że podawanie suplementowanej karmy sprawiało, że gryzonie z obniżonym poziomem SIRT3 miały mniej drgawek i rzadziej umierały. Dieta ta zwiększała także poziom sirtuiny 3.
      Jak tłumaczą akademicy, zastosowana dieta zwiększała ekspresję SIRT3, zapobiegała zgonom związanym z drgawkami oraz degeneracji neuronów GABA-ergicznych. To potwierdza, że nasilona utrata neuronów GABA-ergicznych oraz nadmierna pobudliwość sieci neuronalnych u myszy z tej grupy jest wywołana spadkiem poziomu sirtuiny 3, a zjawiska te można zniwelować, zwiększając ekspresję SIRT3.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Choroba Alzheimera i towarzyszący jej rozpad osobowości przerażają wielu, a dostępne leki, delikatnie mówiąc, nie grzeszą skutecznością. Dzięki pracy zespołu dr. Piotra Pięty z IChF PAN mogą powstać nowe, efektywniejsze farmaceutyki. Naukowcy pokazali, w jaki sposób wielkość cząsteczek złożonych z beta-amyloidu wpływa na sposób ich oddziaływania z błonami komórkowymi, a co za tym idzie, jak modyfikuje przebieg choroby. Kolejnym krokiem ma być testowanie w tym modelu potencjalnych leków.
      Naukowcy są m.in. po to, żeby wyjaśniać, jak funkcjonuje świat. Ich badania często wydają się abstrakcyjne, ale jak się okazuje mogą całkiem realnie pomóc wielu z nas. Tak jest z pracą zespołu dr. Piotra Pięty z IChF PAN. Wykazał on, w jaki sposób wielkość cząsteczek złożonych z beta-amyloidu – substancji uznawanej za "winowajcę" w chorobie Alzheimera – wpływa na sposób oddziaływania tych cząstek z błonami komórkowymi, a co za tym idzie, jak modyfikuje przebieg choroby.
      Naukowcy z IChF pracują na syntetycznych, modelowych błonach komórkowych, zbudowanych najprościej jak można sobie wyobrazić, ale jednocześnie podobnych do tych, jakie można znaleźć w ludzkim mózgu. Błony te składają się tylko z mieszaniny fosfolipidów (bez receptorów i innych białek błonowych) i dzięki temu umożliwiają badaczom skupienie się wyłącznie na tym, jak rozmaite cząsteczki wpływają na barierę zapewniającą trwałość komórek. Chcieliśmy się dowiedzieć, co cząsteczki beta-amyloidu tak naprawdę robią z tymi błonami, wyjaśnia dr Pięta, czy one się osadzają na ich powierzchni, czy je niszczą, czy rozpuszczają, a jeśli rozpuszczają, to dlaczego […].
      Pytań jest wiele, odpowiedzi dopiero się pojawiają. Nam w naszych badaniach udało się kontrolować wielkość oligomerów, czyli niedużych cząsteczek złożonych z kilku amyloidów, i dzięki temu mogliśmy sprawdzić, w jaki sposób ta wielkość wpływa na mechanizm ich oddziaływania z modelową błoną - mówi dr Pięta. W początkowych badaniach nad alzheimerem badano mózgi osób chorych, a w zasadzie już zmarłych na tę chorobę. W mózgach znajdowano złogi zbudowane z długich nici – fibryli - i przez wiele, wiele lat uważano, że to te fibryle są głównym czynnikiem patogennym.
      Ostatnie badania, w tym te prowadzone przez dr. Piętę, pokazują jednak coś innego. To nie długie fibryle są winowajcą, lecz raczej ich prekursory, oligomery beta-amyloidu. Amyloidy są produkowane w sposób ciągły u każdego z nas z białek błonowych; są odcinane enzymatycznie. Problem się pojawia, gdy przestają działać mechanizmy regulujące ich ilość i "wygląd". Nietoksyczne amyloidy zawierają 39-43 aminokwasy, a ich drugorzędowa struktura to alfa-helisa (kształt nieco przypominający łańcuch DNA). Te "niedobre", zmienione, przypominają raczej harmonijki. Najgorsze są takie, które mają 42 aminokwasy. Za pomocą mikroskopii sił atomowych przeprowadziliśmy dwa typy pomiarów, jeden dla cząsteczek małych, o średnicy ok. 2 nm, a drugi dla nieco większych – o średnicy ok. 5 nm - wyjaśnia naukowiec. Okazało się, że małe oligomery działają zupełnie inaczej niż duże. Duże po osadzeniu na błonie agregują, tworząc długie fibryle. Wszystkie zjawiska, które przebiegają z ich udziałem, zachodzą na powierzchni modelowej błony komórkowej i nie prowadzą do jej zniszczenia. Małe oligomery to zupełnie inna historia. One błonę niszczą. Na początku tworzą w niej różnych rozmiarów i kształtów dziury - wyjaśnia dr Pięta. Po utworzeniu dziury małe oligomery wnikają do wnętrza błony i wraz z cząsteczkami fosfolipidów błonowych tworzą globularne micele. Te micelarne kompleksy dyfundują na zewnątrz i w ten sposób usuwają fosfolipidy z błony, prowadząc do jej rozpuszczania. Mechanizm oddziaływania z błoną zmienia się wraz ze zmianą wielkości oligomeru, lecz w przypadku obu badanych przez nas amyloidów wywołuje spadek trwałości mechanicznej błony o ⁓50%. Innymi słowy, zarówno małe, jak i duże oligomery są toksyczne, choć mechanizm ich działania jest inny. Nasze badania wyjaśniają te mechanizmy i godzą sprzeczne raporty publikowane w literaturze - precyzuje badacz.
      Na razie wyjaśniamy tylko podstawowe mechanizmy - mówi dr Pięta, ale w kolejnym etapie naszych badań dołożymy do tego układu cząsteczki leków i sprawdzimy, które z nich potrafią modyfikować oddziaływanie amyloidu z błoną, a zatem, być może, i przebieg choroby. Podejmiemy badania cząsteczek, które np. mogłyby zdezaktywować beta-amyloid, przyczepiając się do niego, zanim zniszczy błonę. Rozpoczęliśmy współpracę z farmaceutami i biochemikami. Możemy im zasugerować, czy ich leki oddziałują z amyloidami, a jeżeli tak, to na jakim poziomie i jak powinny się zachowywać, żeby np. podwyższać trwałość błony komórkowej - podsumowuje naukowiec.
      Badania prowadzone w IChF PAN z pewnością przyczyniają się do lepszego zrozumienia mechanizmów prowadzących do choroby Alzheimera, a tym samym mają szansę zrewolucjonizować sposób jej leczenia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Codzienne wstrzykiwanie przez 5 tygodni myszom z chorobą Alzheimera (ChA) 2 krótkich peptydów znacząco poprawia pamięć zwierząt. Terapia ogranicza także zmiany typowe dla ChA: stan zapalny mózgu oraz akumulację beta-amyloidu.
      U myszy, które przechodziły terapię, zaobserwowaliśmy słabsze nagromadzenie blaszek beta-amyloidu oraz zmniejszenie zapalenia mózgu - podkreśla prof. Jack Jhamandas z Uniwersytetu Alberty.
      Odkrycie bazuje na wcześniejszych ustaleniach odnośnie do związku AC253, który może blokować toksyczne oddziaływania beta-amyloidu. Podczas badań ustalono, że AC253 blokuje przyłączanie beta-amyloidu do pewnych receptorów komórek mózgu.
      Okazało się jednak, że choć AC253 zapobiega akumulacji beta-amyloidu, przez szybki metabolizm w krwiobiegu jest problem z jego docieraniem do mózgu. Wskutek tego, by terapia AC253 była skuteczna, potrzeba dużych ilości tego związku, co jest niepraktyczne i może zwiększyć ryzyko rozwoju odpowiedzi immunologicznej na leczenie. Teoretycznie mogłoby pomóc przekształcenie AC253 z formy wstrzykiwalnej w doustną tabletkę, ale AC253 jest zbyt złożony, by problem dało się rozwiązać w ten sposób.
      Jhamandas wpadł więc na pomysł, by "przeciąć" AC253 na dwa fragmenty i sprawdzić, czy można stworzyć dwie mniejsze nici peptydowe, które blokowałyby beta-amyloid w podobny sposób jak AC253. Podczas serii testów na genetycznie zmodyfikowanych myszach Kanadyjczycy odkryli dwa krótsze fragmenty AC253, które replikowały prewencyjne i regeneracyjne właściwości większego peptydu.
      Następnie naukowcy wykorzystali modelowanie komputerowe i sztuczną inteligencję do prac nad drobnocząsteczkowym lekiem. Zespół koncentruje się na wytworzeniu zoptymalizowanej doustnej wersji, tak by mogły się zacząć testy kliniczne na ludziach. Jhamandas podkreśla, że leki drobnocząsteczkowe są preferowane, bo taniej je wyprodukować, a poza tym mogą one być zażywane doustnie i łatwiej dostają się do mózgu z krwią.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...