Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Jak szybko może biec człowiek?

Rekomendowane odpowiedzi

Pomiary przeprowadzone przez Międzynarodową Federację Lekkiej Atletyki wykazały, że w pewnym momencie swojego rekordowego biegu na 100 m Usain Bolt osiągnął zawrotną prędkość 44,2 km/h. Zespół kierowany przez badaczy z Southern Methodist University uważa jednak, że teoretyczny szczyt możliwości człowieka znajduje się jeszcze dalej, a moc generowana przez ludzkie mięśnie pozwala na osiągnięcie prędkości rzędu... 56-64 km/h!

Swoje wnioski badacze opierają na serii pomiarów przeprowadzonych na siedmiu wytrenowanych biegaczach. Ochotników testowano na specjalnie dostosowanej stacjonarnej bieżni, zdolnej do symulowania bardzo szybkiego biegu i jednoczesnego pomiaru nacisku stóp na jej powierzchnię. Aby zebrać dodatkowe informacje, naukowcy prosili uczestników studium m.in. o bieganie na jednej nodze, a nawet tyłem.

Z zebranych danych wynika, że rzeczywistą barierą dla biegaczy nie jest moc ich nóg. Ustalono to dzięki ocenie mocy generowanej podczas biegu na jednej nodze, która przekraczała o 30% wartości obserwowane podczas normalnego biegu. 

Jeżeli więc barierą dla supersprinterów nie jest moc, jaki czynnik powoduje, że nie mogą oni biegać szybciej? Zdaniem autorów prawdziwą przyczyną tego zjawiska jest bardzo krótki czas kontaktu stóp z bieżnią, wynoszący ok. 0,2 s na każdy krok. Dodatkowo, maksymalny nacisk na bieżnię podczas sprintu jest generowany przez zaledwie 1/4 czasu trwania kontaktu, co jest spowodowane charakterystyką skurczu włókien mięśniowych.

Nasze proste przypuszczenia wskazują, że szybkość skurczu mięśni pozwalająca na osiągnięcie sił bliskich maksimum umożliwiłaby bieganie z prędkością 35-40 mil na godzinę [56-64 km/h - przyp. red.], wnioskuje autor-senior studium, dr Matthew W. Bundle. Oczywiście jest to wartość czysto teoretyczna, lecz może ona oznaczać, że fani lekkiej atletyki mogą jeszcze nieraz złapać się za głowę, obserwując nowe rekordy...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Z im większą prędkością dwie powierzchnie metalowe przesuwają się po sobie, tym bardziej się zużywają. Okazało się jednak, że przy bardzo dużych prędkościach, porównywalnych z prędkością pocisku wystrzeliwanego pistoletu, proces ten ulega odwróceniu. Szybszy ruch powierzchni prowadzi do ich wolniejszego zużycia.
      Gdy dwie metalowe powierzchnie ześlizgują się po sobie, zachodzi wiele złożonych procesów. Krystaliczne regiony, z których zbudowane są metale, mogą ulegać deformacjom, pęknięciom, mogą skręcić się czy nawet zlać. Występuje tarcie i niszczenie powierzchni. Ten niepożądany proces powoduje, że urządzenia się zużywają oraz ulegają awariom. Dlatego też ważne jest, byśmy lepiej zrozumieli zachodzące wówczas procesy. Podczas badań nad tym zjawiskiem naukowcy z Uniwersytetu Technicznego w Wiedniu (TU Wien) i Austriackiego Centrum Doskonałości Tribologii dokonali zaskakującego, sprzecznego z intuicją odkrycia.

      W przeszłości tarcie mogliśmy badać tylko w czasie eksperymentów. W ostatnich latach dysponujemy superkomputerami na tyle potężnymi, że możemy w skali atomowej modelować bardzo złożone procesy zachodzące na powierzchniach materiałów, mówi Stefan Eder z TU Wien. Naukowcy modelowali różne rodzaje metalowych stopów. Nie były to doskonałe kryształy, ale powierzchnie bliskie rzeczywistości, złożone niedoskonałe struktury krystaliczne. To bardzo ważne, gdyż te wszystkie niedoskonałości decydują o tarciu i zużywaniu się powierzchni. Gdybyśmy symulowali doskonałe powierzchnie miałoby to niewiele wspólnego z rzeczywistością, dodaje Eder.
      Z badań wynika, że przy dość niskich prędkościach, rzędu 10-20 metrów na sekundę, zużycie materiału jest niewielkie. Zmienia się tylko zewnętrzna jego warstwa, warstwy głębiej położone pozostają nietknięte. Przy prędkości 80–100 m/s zużycie materiału, jak można się tego spodziewać, wzrasta. Stopniowo wchodzimy tutaj w taki zakres, gdzie metal zaczyna zachowywać się jak miód czy masło orzechowe, wyjaśnia Eder. Głębiej położone warstwy materiału są ciągnięte w kierunku ruchu metalu przesuwającego się po powierzchni, dochodzi do całkowitej reorganizacji mikrostruktury.
      Później zaś na badaczy czekała olbrzymia niespodzianka. Przy prędkości ponad 300 m/s zużycie ocierających się o siebie materiałów spada. Mikrostruktury znajdujące się bezpośrednio pod powierzchnią, które przy średnich prędkościach były całkowicie niszczone, pozostają w większości nietknięte. To zaskakujące dla nas i wszystkich zajmujących się tribologią. Jednak gdy przejrzeliśmy literaturę fachową okazało się, że obserwowano to zjawisko podczas eksperymentów. Jednak nie jest ono powszechnie znane, gdyż eksperymentalnie bardzo rzadko uzyskuje się tak duże prędkości, dodaje Eder. Wcześniejsi eksperymentatorzy nie potrafili wyjaśnić, dlaczego tak się dzieje. Dopiero teraz, dzięki symulacjom komputerowym, można pokusić się o bardziej dokładny opis.
      Analiza danych komputerowych wykazała, że przy bardzo wysokich prędkościach w wyniku tarcia pojawia się duża ilość ciepła. Jednak ciepło to jest nierównomiernie rozłożone. Gdy dwa metale przesuwają się po sobie z prędkością setek metrów na sekundę, w niektórych miejscach rozgrzewają się do tysięcy stopni Celsjusza. Jednak pomiędzy tymi wysokotemperaturowymi łatami znajdują się znacznie chłodniejsze obszary. W wyniku tego niewielkie części powierzchni topią się i w ułamku sekundy ponownie krystalizują. Dochodzi więc do dramatycznych zmian w zewnętrznej warstwie metalu, ale to właśnie te zmiany chronią głębsze warstwy. Głębiej położone struktury krystaliczne pozostają nietknięte.
      Zjawisko to, o którym w środowisku specjalistów niewiele wiadomo, zachodzi w przypadku różnych materiałów. W przyszłości trzeba będzie zbadać, czy ma ono również miejsce przy przejściu z dużych do ekstremalnych prędkości, stwierdza Eder. Bardzo szybkie przesuwanie się powierzchni metalicznych względem siebie ma miejsce np. w łożyskach czy systemach napędowych samochodów elektrycznych czy też podczas polerowania powierzchni.
      Szczegóły badań zostały opublikowane na łamach Applied Materials Today.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Debby Herbenick, badaczka z Indiana University, potwierdziła, że same ćwiczenia fizyczne - bez aktu płciowego czy marzeń o treści erotycznej - są w stanie wywołać u kobiety orgazm (Sexual and Relationship Therapy).
      Amerykanie potwierdzili istnienie anegdotycznego orgazmu, nazywanego po angielsku, od związku z ćwiczeniami stymulującymi głębokie mięśnie tułowia (core abdominal muscles), "coregasm".
      Ćwiczeniami najczęściej kojarzonymi z wywoływaniem orgazmu są wspinaczka linowa, podnoszenie ciężarów, jazda na rowerze czy gimnastyka brzucha. [Nasze] dane są interesujące, bo sugerują, że orgazm to niekoniecznie wydarzenie seksualne.
      Herbenick i J. Dennis Fortenberry analizowali wyniki ankiet wypełnionych online przez 124 kobiety wspominające o orgazmach wywołanych ćwiczeniami (ang. exercise-induced orgasms, EIO) i przez 246 pań doświadczających przyjemności seksualnej podczas ćwiczeń (ang. exercise-induced sexual pleasure, EISP). Wiek ochotniczek wynosił od 18 do 63 lat. Większość pań pozostawała w związku, 69% określiło swoją orientację jako heteroseksualną.
      Ustalono, że ok. 40% kobiet przeżyło EIO bądź EISP ponad 10 razy. Większość przedstawicielek grupy EIO twierdziła, że gimnastykując się w miejscach publicznych, ma jakąś kontrolę nad odczuciami, lecz dla ok. 20% doświadczenie było niekontrolowalne. Gros kobiet z EIO podkreśla, że w czasie tego typu orgazmu nie fantazjuje ani nie myśli o kimś pociągającym seksualnie.
      W grupie EIO orgazm wywoływały następujące ćwiczenia: podnoszenie ciężarów (26,5%), joga (20%), jeżdżenie na rowerze (15,8%), bieg (13,2%) oraz marsz/wędrówka po górach (9,6%).
      W przyszłości naukowcy zamierzają się więcej dowiedzieć o mechanizmach/wyzwalaczach EIO oraz EISP. Może być tak, że ćwiczenia, o których już teraz wiadomo, że sprzyjają zdrowiu i dobrostanowi, poprawiają także życie erotyczne kobiety. Co do tego nie ma jednak pewności. Kolejnym znakiem zapytania jest, jak bardzo EIO i EISP są rozpowszechnione wśród kobiet. Wydaje się jednak, że to dość częste zjawiska, bo 370-osobową próbę do badań zebrano w 5 tygodni.
    • przez KopalniaWiedzy.pl
      Skłaniając ludzi do myślenia w szybkim tempie, można ich zachęcić do podejmowania ryzyka. Amerykańscy psycholodzy uważają, że współczesne filmy o wartkiej akcji czy migające światła w kasynie wywierają na nas taki właśnie wpływ.
      W ramach wcześniejszych badań prof. Emily Pronin z Princeton University wykazała, że można zmienić tempo myślenia i że myślenie w żywszym tempie wprowadza ludzi w dobry nastrój. Wiedząc to, Amerykanka zastanawiała się, czy myśląc szybko, jesteśmy bardziej skłonni podejmować ryzyko. Stąd pomysł na 2 eksperymenty.
      W 1. uczestnicy odczytywali na głos stwierdzenia wyświetlane na ekranie komputera. Prędkość wyświetlania można było kontrolować i czasem była ona 2-krotnie większa od zwykłego tempa czytania, a czasem 2-krotnie mniejsza. Później ochotnicy mieli nadmuchać serię wirtualnych balonów. Każde dmuchnięcie dodawało do banku kolejne 5 centów, jednocześnie zwiększało się jednak ryzyko pęknięcia. Jeśli dana osoba przestawała dmuchać przed pęknięciem, zachowywała zebrane pieniądze. Jeśli nie, ulatniały się one razem z powietrzem z pękniętego balonu. Okazało się, że osoby, które zmuszono do czytania z prędkością większą od przeciętnej, dmuchały dłużej niż reszta i z większym prawdopodobieństwem traciły pieniądze.
      W drugim eksperymencie badani oglądali 3 filmiki wideo. Każdy przedstawiał neutralne sceny - np. wodospady, iguany czy miasta - ale zróżnicowano je ze względu na średnią długość ujęcia. Tempo było więc bardzo duże (jak w klipach muzycznych), średnie (jak w typowym filmie hollywoodzkim) albo plasowało się między nimi. Po obejrzeniu nagrań uczestnicy studium wypełniali kwestionariusz z pytaniami dotyczącymi prawdopodobieństwa angażowania się w najbliższym półroczu w ryzykowne zachowania, np. seks bez zabezpieczeń. I tym razem stwierdzono, że im większe tempo filmu i myślenia, tym większa skłonność do podejmowania ryzyka.
    • przez KopalniaWiedzy.pl
      Poruszając się z prędkością 2 m/s, czyli 7,19 km/h, ludzie wolą biec niż iść. Doktorzy Gregory Sawicki i Dominic Farris z Uniwersytetu Północnej Karoliny uważają, że dzieje się tak, gdyż przy takiej szybkości podczas biegu lepiej wykorzystujemy kluczowy mięsień łydki.
      Naukowcy, których artykuł ukazał się w Proceedings of the National Academy of Sciences (PNAS), posłużyli się ultrasonografią, filmowaniem ruchu szybką kamerą oraz bieżnią mierzącą nacisk. W ten sposób mierzyli zachowanie mięśni łydki podczas biegu i chodzenia.
      Niewielka głowica ultrasonograficzna przymocowywana z tyłu nogi pokazywała w czasie rzeczywistym, jak mięsień dostosowuje się do chodu i biegu z różną prędkością. Szybkie zdjęcia zademonstrowały, że głowa przyśrodkowa mięśnia brzuchatego działa jak sprzęgło uruchamiające się szybko po rozpoczęciu chodzenia. Mięsień brzuchaty przytrzymuje jak linka jeden z końców ścięgna Achillesa, gdy przekazywana jest do niego energia do rozciągania. Później do gry włącza się samo ścięgno, które podczas odrzutu uwalnia zmagazynowaną energię, wspomagając w ten sposób ruch.
      Studium ujawniło, że gdy mięsień coraz szybciej zmienia swoją długość, dostarcza coraz mniej mocy, co oznacza obniżenie ogólnej wydajności. Kiedy jednak ludzie zaczynają biec z prędkością ok. 2 m/s, mięśnie zwalniają: zmiana długości zachodzi wolniej, zapewniając większą moc przy słabszej pracy.
      Techniki ultrasonograficzne pozwalają oddzielić od siebie ruchy poszczególnych mięśni podudzia. Dotąd nie były, niestety, wykorzystywane w takim kontekście - podkreśla Farris. Badanie wyjaśnia, czemu superszybki chód jest ograniczony właściwie do olimpiad i innych zmagań sportowych. Mięśnie pracują zbyt nieefektywnie, dlatego ciało przestawia się na bieg. Rosną wtedy skuteczność zarządzania energią i wygoda.
      W miarę jak idziemy coraz szybciej, miesień nie jest w stanie dopasować się do prędkości ruchu. Kiedy jednak dokonuje się przejście od chodu do biegu, ten sam mięsień staje się niemal statyczny i nie musi zmieniać swojego zachowania w znacznym stopniu, gdy biegacz coraz bardziej się rozpędza (choć nie testowaliśmy go podczas sprintów) - wyjaśnia Sawicki.
       
       
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...