Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Szybki i wiarygodny test na H. pylori
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Odcisk palca czy DNA to nie jedyne unikatowe cechy, po których można odróżnić ludzi od siebie. Izraelscy naukowcy donoszą właśnie na łamach Current Biology, że badając wzorzec oddychania możemy z 96,8-procentową dokładnością zidentyfikować konkretną osobę. Wzorzec oddychania przez nos daje też wgląd w nasze zdrowie fizyczne i psychiczne.
Uczeni z Instytutu Weizmanna i Uniwersytetu w Hajfie dokonali swojego odkrycia podczas badań nad zmysłem węchu. Ssaki czują zapachy podczas wdychania powietrza, a za przetwarzanie informacji o zapachach odpowiedzialny jest mózg. A skoro każdy mózg jest unikatowy, zaczęli zastanawiać się uczeni, czy znajduje to odzwierciedlenie we wzorcu oddychania?
Żeby rozstrzygnąć tę kwestię naukowcy stworzyli niewielkie ubieralne urządzenie, które przez 24 godziny rejestrowało wzorzec przepływu powietrza przez nos. Do badań zaangażowano 100 zdrowych młodych dorosłych i poproszono ich, by nosili urządzenie przez całą dobę. Zebrane w ten sposób dane poddano analizie i okazało się, że wzorzec oddychania pozwala na zidentyfikowanie konkretnej osoby z równie duża dokładnością, jak niektóre technologie rozpoznawania głosu. Badania powtarzano wielokrotnie w ciągu dwóch lat i zawsze otrzymywano ten sam wynik.
Sądziłam, że bardzo trudno będzie zidentyfikować kogoś po oddechu, gdyż w ciągu dnia wykonujemy różne czynności: ćwiczymy, odpoczywamy, uczymy się, pracujemy. Okazało się jednak, że wzorce oddychania pozostają unikatowego", mówi Timna Soroka z Instytutu Weizmanna.
O ile jednak możliwość identyfikowania osób po oddechu jest pewną ciekawostką, to wzorce oddychania mogą mieć bardzo praktyczne zastosowanie. Z badań wynika bowiem, że ten unikatowy „oddechowy odcisk palca” był skorelowany z BMI, cyklem snu i czuwania, poziomem odczuwanego niepokoju i depresji, a nawet z zachowaniami. Na przykład osoby, u których występował wyższy poziom lęku, miały krótszy oddech i większe zróżnicowanie przerw w oddychaniu podczas snu. Takie wyniki sugerują, że długoterminowe badania wzorców oddechu może stać się narzędziem pozwalającym diagnozować dobrostan fizyczny i emocjonalny.
Naukowcy pracują obecnie nad łatwiejszymi w obsłudze i noszeniu urządzeniami do monitorowania oddechu. Rozpoczęli też badania, których celem jest sprawdzenie, czy ludzie mogą naśladować wzorzec zdrowego oddychania i poprawić w ten sposób swój stan fizyczny i psychiczny.
Źródło: Humans have nasal respiratory fingerprints, https://www.cell.com/current-biology/fulltext/S0960-9822(25)00583-4
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dr Paweł Krzyżek z Katedry i Zakładu Mikrobiologii Uniwersytetu Medycznego im. Piastów Śląskich we Wrocławiu zbada, co powoduje antybiotykooporność Helicobacter pylori, a więc patogenu odgrywającego kluczową rolę w rozwoju stanów zapalnych żołądka, wrzodów żołądka i dwunastnicy, a także nowotworów żołądka. Ważną częścią projektu będzie analiza biofilmu.
Jak podkreśla dr Krzyżek, rosnąca oporność H. pylori jest wynikiem niewłaściwego stosowania środków przeciwdrobnoustrojowych. Z drugiej strony do problemów związanych z leczeniem zakażeń tą bakterią przyczyniają się 1) jej zdolność do tworzenia biofilmu (wielokomórkowej struktury otoczonej grubą warstwą macierzy), 2) możliwość zmiany morfologii z typowej dla H. pylori formy spiralnej w mniej wrażliwą na antybiotyki formę sferyczną oraz 3) wydzielanie pęcherzyków błonowych, czyli struktur pozakomórkowych, które aktywnie usuwają substancje przeciwdrobnoustrojowe z wnętrza komórek i stabilizują architekturę biofilmu.
W ramach swojego projektu dr Krzyżek chce prześledzić dynamikę zmian adaptacyjnych (przystosowawczych) szczepów H. pylori podczas ekspozycji na najważniejsze stosowane obecnie antybiotyki: klarytromycynę, metronidazol i lewofloksacynę.
Na potrzeby badań naukowiec sformułował dwie hipotezy główne: 1) produkcja biofilmu przy wystawieniu na działanie antybiotyków jest intensywniejsza u szczepów wielolekoopornych H. pylori niż u szczepów wrażliwych lub z pojedynczą opornością; 2) wystawienie szczepów H. pylori na podprogowe stężenia antybiotyków przyczynia się do szeregu zmian przystosowawczych zależnych od użytego antybiotyku.
W pierwszym etapie naukowiec będzie prowadził hodowle mikrobiologiczne i analizował tworzenie biofilmu w warunkach stacjonarnych. W kolejnym chce potwierdzić uzyskane wyniki w warunkach przepływowych. W tym celu zastosuje automatyczny system Bioflux; pozwoli on na badanie wzrostu bakteryjnego w warunkach kontrolowanego przepływu medium i antybiotyków. Co ważne, przypomina to warunki panujące w naszym organizmie. W tym miejscu warto nadmienić, że badania nad tworzeniem biofilmu przez H. pylori w warunkach przepływu medium mają charakter wysoce innowacyjny i po raz pierwszy na świecie zostały wykonane przez zespół badawczy pod moim kierownictwem - przypomniał dr Krzyżek.
Zespół Krzyżka wykona analizy biofilmu stosując wiele selektywnych barwników, dzięki którym można będzie wizualizować poszczególne komponenty oraz przeprowadzi oceny jego parametrów fizycznych. Dzięki temu możliwa będzie ocena zmian zachodzących w biofilmie pod wpływem stresu powodowanego przez obecność antybiotyków.
W kolejnym etapie badań zespół zajmie się oceną jakościowo-ilościową pęcherzyków błonowych. Badania te będą prowadzone we współpracy z zespołem doktor Rosselli Grande z Uniwersytetu „Gabriele d'Annunzio” we Włoszech. To jeden z dwóch zespołów na świecie, który specjalizuje się w tematyce pęcherzyków błonowych H. pylori.
Głównym celem doktora Krzyżka jest poszerzenie wiedzy na temat mechanizmów adaptacyjnych H. pylori oraz nabywania antybiotykooporności przez ten patogen. Dzięki temu możliwe będzie opracowanie lepszych terapii do walki z tą bakterią.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Lawrence Berkeley National Laboratory (LBNL) odkryli nowy izotop mendelewu (Md). 244Mendlew to 17. i najlżejszy znany izotop tego sztucznie otrzymanego pierwiastka. Mendelew został po raz pierwszy uzyskany w 1955 roku właśnie w Berkeley Lab. To jeden z 16 pierwiastków, który odkryli lub pomogli odkryć naukowcy z LBNL.
Md-244 uzyskano w uruchomionym przed 3 laty 88-calowym cyklotronie. To rodzaj akceleratora, który został w 1930 roku opracowany przez Ernesta O. Lawrence'a, od którego nazwiska pochodzi nazwa laboratorium.
Uczeni z Berkeley Lab odkryli 12 z 17 izotopów mendelewu. W sumie laboratorium ma na swoim koncie odkrycie 640 izotopów, czyli około 20% ze wszystkich – 3308 – znanych izotopów. Żadna inna instytucja naukowa nie może pochwalić się takim osiągnięciem. 244Md to pierwszy izotop odkryty w LBNL od 2010 roku.
Odkrycie nowego izotopu mendelewu nie było proste, gdyż wszystkie sąsiadujące z nim izotopy mają bardzo podobny sposób rozpadu, mówi Jennifer Pore, która stała na czele zespołu badawczego. W ramach badań jej zespół dokonał szczegółowych pomiarów właściwości 10 atomów 244Md. Wyniki ich pracy ukazały się na łamach Physical Review Letters.
Każdy z izotopów ma unikatową kombinację protonów i neutronów. Gdy odkrywamy nowy izotop wiemy, że taka kombinacja nigdy wcześniej nie była obserwowana. Badania izotopów prowadzą nas do lepszego zrozumienia natury materii, wyjaśnia Pore.
Naukowcy zdobyli dowody, że 244Md może rozpadać się na dwa różne sposoby, co prowadzi do różnego okresu półżycia wynoszącego 0,4 oraz 6 sekund.
Badając mendelew naukowcy dokonali też dodatkowego odkrycia. Jako pierwsi zdobyli dowody na rozpad alfa berkelu-236, który zmienia się w ameryk-232.
Kluczowym elementem, dzięki któremu odkryto 244Md był wspomniany już 88-inch Cyclotron, którego centralny element stanowi FIONA (For the Identification Of Nuclide A).
Michael Thoennessen z Michigan State University, który zarządza listą izotopów zauważa, że w ostatnich latach nowe izotopy są odkrywane rzadziej niż wcześniej. Nowe izotopy odkrywane są cyklicznie, a odkrycia zależą od pojawiania się nowych akceleratorów i postępach w rozwoju sprzętu do prowadzenia eksperymentów. Naukowiec mówi, że to takie urządzenia jak FIONA czy FRIB (Facility for Rare Isotope Beams) budowany właśnie na Michigan State University, mają unikatowe właściwości i olbrzymi potencjał dokonania nowych odkryć.
Zespół Pore, chcąc upewnić się, że FIONA pracuje bez zarzutu, najpierw przeprowadził w cyklotronie szczegółowe analizy rozpadu innych izotopów mendelewu, w tym 247Md, 246Md i 245Md. Uzyskane wyniki były zgodne z tym, co o izotopach tych wiedziano wcześniej. Gdy już zyskaliśmy pewność, że instrument dobrze wyznaczył właściwości tych izotopów, przystąpiliśmy do eksperymentów mających na celu okrycie nieznanego dotychczas izotopu 244Md, mówi Pore.
Nowy izotop mendelewu uzyskano kierując wiązkę zawierającą argon-40 na cienką folię z bizmutu-209. Uczeni mieli nadzieję, że dojdzie do bezpośredniego zderzenia i połączenia obu izotopów, w wyniku czego powstanie 244Md, a oni zdążą zbadać jego właściwości, zanim ulegnie on rozpadowi. Eksperyment zakończył się sukcesem dzięki temu, że w skład cyklotronu, obok FIONA, wchodzi też Berkeley Gas-Filled Separator. Urządzenie to oddziela poszukiwane atomy od reszty, umożliwiając szybkie zbadanie ich właściwości.
Teraz, gdy FIONA sprawdziła się w roli wykrywacza nowych izotopów, Pore już planuje prace nad odkryciem innych nieznanych jeszcze izotopów.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Opisano mechanizm molekularny, za pośrednictwem którego bakterie Helicobacter pylori są przyciągane do antydrobnoustrojowego kwasu podchlorawego (HOCl), wytwarzanego przez enzym neutrofilów (mieloperoksydazę) w czasie stanu zapalnego. Amerykanie uważają, że za pomocą białka TlpD H. pylori wykrywa stan zapalny, co może jej pomagać w kolonizacji żołądka oraz lokalizowaniu uszkodzonej tkanki i składników odżywczych.
H. pylori wykrywa HOCl [...], wykorzystując do tego cytozolowy chemoreceptor.
Zespół z Uniwersytetu Oregonu chciał sprawdzić, jak H. pylori reagują na wytwarzany przez neutrofile kwas podchlorawy. Ostatecznie okazało się, że białkowy aparat do wykrywania HOCl występuje nie tylko u H. pylori - opowiada prof. Karen Guillemin.
Badania rozpoczęły się 2,5 roku temu. Ich celem było określenie funkcji molekularnej białka TlpD, o którym akademicy wiedzieli, że bierze udział w regulacji bakteryjnej wici. Specjaliści zdawali sobie sprawę, że TlpD jest sensorem molekularnym, nie mieli jednak pojęcia, co właściwie wykrywa.
By uzupełnić tę lukę w wiedzy, ekipa Guillemin wyizolowała TlpD i dwa inne białka odpowiedzialne za przekazywanie sygnału molekularnego do wici. Izolowanie komponentów systemu sygnalizacji pozwala nam lepiej zrozumieć przebieg zdarzeń.
Ponieważ wcześniejsze badania ujawniły, że TlpD może reagować na reaktywne formy tlenu (RFT), dr Arden Perkins testował różne związki/rodniki, np. nadtlenek wodoru, rodnik ponadtlenkowy i kwas podchlorawy. Trafieniem okazał się HOCl.
Choć wydaje się, że to antyintuicyjne, by bakterie były przyciągane przez szkodliwy związek, dalsze badania z udziałem żywych patogenów potwierdziły, że są one wabione do źródeł kwasu podchlorawego (stężenia były typowe dla ludzkiego organizmu) i że nic im się w takiej sytuacji nie dzieje.
Jak tłumaczą Amerykanie, kwas podchlorawy działa jako chemoatraktant, odwracalnie utleniając konserwatywną cysteinę w motywie wiążącym 3His/1Cys Zn białka TlpD. H. pylori reaguje na mikromolowe stężenia kwasu podchlorawego, nasilając przemieszczanie w kierunku jego źródeł (chemotaksję dodatnią).
Powtarzanie eksperymentu dawało te same rezultaty (naukowcy kontrolowali przy tym alternatywne wyjaśnienia obserwowanego zjawiska).
Jest jasne, że H. pylori wyewoluowała zabezpieczenia, które pozwalają jej przetrwać we wrogim środowisku, mimo że występują w nim potencjalnie wysokie stężenia kwasu podchlorawego - podkreśla Perkins.
TlpD-podobne białka pałeczek okrężnicy (Escheriachia coli) i Salmonella enterica także potrafią wykryć HOCl, co wskazuje, że wyczuwanie kwasu podchlorawego to nierozpoznane dotąd zjawisko, które występuje u wielu typów bakterii. Jednym słowem, istnieje rodzina białek TlpD-podobnych, która pozwala różnym bakteriom wyczuwać miejsca zapalenia tkanek.
Autorzy publikacji z pisma PLoS Biology mają nadzieję, że ich ustalenia pozwolą opracować nowe terapie, które zaburzą zdolność patogenów do wykrywania środowiska. Może to mieć ogromny wpływ na radzenie sobie z lekoopornością. Niewykluczone, że presja selekcyjna jest słabsza, jeśli bakteria styka się z lekiem, który po prostu ją dezorientuje - podsumowuje Guillemin.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Gdy w 1982 roku naukowcy zauważyli związek pomiędzy Helicobacter pylori a przewlekłym nieżytem żołądka, wywołało to całą lawinę badań. Wkrótce okazało się, że H. pylori odpowiada zarówno za wrzody żołądka jak i raka przewodu pokarmowego. Jednak mimo tego, że związek ten był jasny, dotychczas nie wiedziano, w jaki sposób bakteria wywołuje nowotwór.
Teraz naukowcy z Uniwersytetu Kanazawa oraz Japońskiej Agencji Badań Medycznych i Rozwoju wykazali, że zapalenie wywoływane przez H. pylori powoduje proliferację komórek macierzystych nabłonka układu pokarmowego, co prowadzi do rozwoju nowotworu. Wyniki badań opublikowano na łamach Oncogene.
Już wcześniej wykazaliśmy, że czynnik martwicy nowotworów TNF-α, który wywołuje zapalenie, wspomaga powstawanie guza poprzez aktywowanie proteiny NOXO1. Nie wiedzieliśmy jak dokładnie NOXO1 przyczynia się do powstania guza, mówi główny autor badań, doktor Kanae Echizen.
NOXO1 wchodzi w skład oksydazy NOX1, która wytwarza szkodliwe reaktywne formy tlenu (RFT). Pod wpływem stresu oksydacyjnego powodowanego przez RFT może dojść do mutacji DNA w komórkach żołądka, co może doprowadzić do rozwoju guza. W czasie zapalenie powodowanego przez H. pylori również pojawiają się RFT.
Autorzy najnowszych badań wykazali, że stan zapalny prowadzi do nadmiarowej produkcji protein NOX1. Dzieje się to w odpowiedzi na sygnały przesyłane przez proteinę NF-kB, która włącza geny odpowiedzialne za zwalczanie infekcji i która jest ważnym elementem odpowiedzi układu odpornościowego.. Uczeni zauważyli najważniejszą rzecz, a mianowicie, że sygnały przesyłane przez NOX1 i RFT powodują, iż komórki macierzyste nabłonka układu pokarmowego zaczynają namnażać się w sposób niekontrolowany, powodując powstanie guza.
Po zdobyciu tej wiedzy naukowcy wykorzystali leki do wyciszenia aktywności NOX1, co natychmiast zatrzymało wzrost komórek nowotworowych. Co więcej, gdy u myszy zniszczono NOXO1, to powstrzymano proliferację komórek macierzystych nabłonka.
W końcu wykazaliśmy, że stan zapalny zwiększa ekspresję NOXO1, co z kolei pobudza proliferację komórek macierzystych nabłonka układu pokarmowego, prowadząc do pojawienia się guza. Rak układu pokarmowego to czwarty najbardziej rozpowszechniony nowotwór na świecie i drugi pod względem liczby ofiar śmiertelnych. Jeśli będziemy w stanie zablokować szlak sygnałowy NOX1/RFT, być może będziemy też w stanie zapobiec rozwojowi choroby, cieszy się doktor Masanobu Oshima.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.