Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Testy naczyniowej teorii stwardnienia rozsianego

Rekomendowane odpowiedzi

Naukowcy z University of Buffalo testują hipotezę włoskiego badacza doktora Paola Zamboniego, że 90% przypadków stwardnienia rozsianego (łac. sclerosis multiplex, SM) to skutek zwężenia naczyń krwionośnych mózgu. Wg niego, widać je na skanach.

Pracownik Uniwersytetu w Ferrarze przeprowadził już w kilku przypadkach przypominające angioplastykę operacje usunięcia zatorów. Ponoć zniknęła po nich większość objawów choroby. Amerykanie chcą powtórzyć jego wcześniejsze badania. W ten sposób zamierzają potwierdzić lub obalić naukowe podstawy tej metody terapii.

Członkowie zespołu doktora Roberta Zivadinova planują zebrać grupę 1100 pacjentów ze stwardnieniem rozsianym i 600-osobową grupę kontrolną, składającą się z ludzi zdrowych lub mających schorzenia neurologiczne inne niż SM. Za pomocą USG dopplerowskiego będą skanować ochotników, poszukując ewentualnych przewężeń naczyń szyi i śródczaszkowych. Jeśli uda się potwierdzić teorię chronicznej mózgowo-rdzeniowej niewydolności naczyniowej Zamboniego, rozumienie stwardnienia rozsianego zmieni się radykalnie. Teraz największy nacisk kładzie się bowiem na nieprawidłową reakcję immunologiczną. Włoch twierdzi, że zatory są raczej przyczyną, a nie skutkiem SM. Pozwalają one, by żelazo z krwi przenikało do tkanki mózgu i uszkadzało ją.

Na razie minęło 10 miesięcy. Jeśli nic się nie stanie w ciągu następnych 2-3 lat, będzie można powiedzieć, że metoda działa – uważa Kevin Lipp, Amerykanin, który po zoperowaniu przez Zamboniego nie ma jak dotąd żadnych symptomów SM.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W Polsce na stwardnienie rozsiane (SM) cierpi około 60 tysięcy osób. Jest więc ono jedną z najpowszechniej występujących chorób układu nerwowego. W jej przebiegu układ odpornościowy atakuje otoczkę mielinową nerwów, prowadząc do ich uszkodzenia. W zależności od miejsca ataku, choroba daje bardzo wiele objawów, włącznie z zaburzeniami widzenia czy paraliżem. Przyczyny stwardnienia rozsianego wciąż nie zostały poznane, jednak najprawdopodobniej są one liczne. Wśród nich wymienia się też rolę mikrobiomu jelit.
      Już wcześniejsze badania wskazywały na istnienie różnić w składzie mikrobiomu pomiędzy osobami cierpiącymi na SM, a zdrowymi. Jednak znacznie tych różnic nie zostało rozpoznane, gdyż wpływ na mikrobiom mają też czynniki genetyczne czy dieta. Trudno więc stwierdzić, na ile różnice mają związek ze stwardnieniem rozsianym, a na ile są spowodowane innymi czynnikami.
      Naukowcy z Niemiec i USA, chcąc zmniejszyć niepewność dotyczącą roli mikrobiomu w SM przeprowadzili badania na 101 parach bliźniąt jednojajowych, z których jedno cierpiało na stwardnienie rozsiane. Mieli więc do czynienia z osobami, które niemal nie różniły się genetycznie, a ponadto do wczesnej dorosłości mieszkały razem, więc były poddane wpływom bardzo podobnych czynników środowiskowych.
      Uczeni przeanalizowali próbki kału od 81 par bliźniąt i znaleźli 51 taksonów w przypadku których występowały różnice w ilości mikroorganizmów u osób zdrowych i chorych. Cztery pary bliźniąt zgodziły się też na pobranie wycinka jelita cienkiego. Natępnie mikroorganizmy tam znalezione zostały przeszczepione trangenicznym myszom. U zwierząt, których jelito cienkie zostało skolonizowane przez mikroorganizmy żyjące w jelicie cienkim osób z MS, znacznie częściej dochodziło do pojawienia się objawów przypominających stwardnienie rozsiane.
      Następnie naukowcy przeanalizowali odchody myszy wykazujących objawy stwardnienia rozsianego i uznali, że bakteriami najbardziej podejrzanymi o powodowanie choroby są dwaj członkowie rodziny Lachnospiraceae: Lachnoclostridium sp. i Eisenbergiella tayi. Oba gatunki występują w jelitach w niewielkiej ilości, dlatego dotychczas tylko w szeroko zakrojonych i dobrze kontrolowanych badaniach pojawiały się wyniki wskazujące, że mogą mieć one coś wspólnego z MS. Teraz po raz pierwszy pojawił się dowód na ich szkodliwe działanie. Warto przy okazji przypomnieć, że Lachnospiraceae wiązane są też z depresją i atakami na komórki układu odpornościowego.
      Autorzy badań nie wykluczają, że i inne mikroorganizmy biorą udział w patogenezie stwardnienia rozsianego. W trakcie przyszłych badań warto też skupić się na roli Lachnoclostridium sp. i Eisenbergiella tayi, lepiej poznać ich wpływ na myszy oraz przełożyć uzyskane wyniki na ludzi. Jeśli okazałoby się, że do rozwoju MS przyczynia się niewielka grupa bakterii, możliwe stało by się opracowanie nowych metod leczenia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Mózg chroniony jest przez czaszkę, opony mózgowo-rdzeniowe i barierę krew-mózg. Dlatego leczenie chorób go dotykających – jak udary czy choroba Alzheimera – nie jest łatwe. Jakiś czas temu naukowcy odkryli szlaki umożliwiające przemieszczanie się komórek układ odpornościowego ze szpiku kości czaszki do mózgu. Niemieccy naukowcy zauważyli, że komórki te przedostają się poza oponę twardą. Zaczęli więc zastanawiać się, czy kości czaszki zawierają jakieś szczególne komórki i molekuły, wyspecjalizowane do interakcji z mózgiem. Okazało się, że tak.
      Badania prowadził zespół profesora Alego Ertürka z Helmholtz Zentrum München we współpracy z naukowcami z Uniwersytetu Ludwika i Maksymiliana w Monachium oraz Uniwersytetu Technicznego w Monachium. Analizy RNA i białek zarówno w kościach mysich, jak i ludzkich, wykazały, że rzeczywiście kości czaszki są pod tym względem wyjątkowe. Zawierają unikatową populację neutrofili, odgrywających szczególną rolę w odpowiedzi immunologicznej. Odkrycie to ma olbrzymie znaczenie, gdyż wskazuje, że istnieje złożony system interakcji pomiędzy czaszką a mózgiem, mówi doktorant Ilgin Kolabas z Helmholtz München.
      To otwiera przed nami olbrzymie możliwości diagnostyczne i terapeutyczne, potencjalnie może zrewolucjonizować naszą wiedzę o chorobach neurologicznych. Ten przełom może doprowadzić do opracowania bardziej efektywnych sposobów monitorowania takich schorzeń jak udar czy choroba Alzheimer i, potencjalnie, pomóc w zapobieżeniu im poprzez wczesne wykrycie ich objawów, dodaje profesor Ertürk.
      Co więcej, badania techniką pozytonowej tomografii emisyjnej (PET) ujawniły, że sygnały z czaszki odpowiadają sygnałom z mózgu, a zmiany tych sygnałów odpowiadają postępom choroby Alzhaimera i udaru. To wskazuje na możliwość monitorowania stanu pacjenta za pomocą skanowania powierzchni jego głowy.
      Członkowie zespołu badawczego przewidują, że w przyszłości ich odkrycie przełoży się na opracowanie metod łatwego monitorowania stanu zdrowia mózgu oraz postępów chorób neurologicznych za pomocą prostych przenośnych urządzeń. Nie można wykluczyć, że dzięki niemu opracowane zostaną efektywne metody ich leczenia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na łamach Human Brain Mapping ukazał się artykuł, którego autorzy informują o zauważeniu międzypłciowych różnic w budowie mózgu u 5-letnich dzieci. Różnice zaobserwowane w istocie białej uwidaczniają różnice w rozwoju obu płci. Wyraźnie widoczny jest dymorfizm płciowy, a już w 5-letnim mózgu widać znaczne różnice w wielu regionach mózgu. Uzyskane wyniki zgadzają się z wynikami wcześniejszych badań, które wskazywały na szybszy rozwój mózgu kobiet.
      Podczas badań naukowcy wykorzystali technikę MRI obrazowania tensora dyfuzji. Polega ona na wykrywaniu mikroskopijnych ruchów dyfuzyjnych cząsteczek wody w przestrzeni zewnątrzkomórkowej tkanek. Jednym z głównych parametrów ocenianych tą metodą jest frakcjonowana anizotropia (FA). Jako, że tkanka nerwowa ośrodkowego układu nerwowego ma uporządkowaną budowę, oceniając współczynnik FA można zauważyć różnice w budowę istoty białej.
      Uczeni z Uniwersytetu w Turku porównali tą metodą budowę istoty białej u 166 zdrowych niemowląt w wieku 2–5 tygodni oraz 144 zdrowych dzieci w wieku od 5,1 do 5,8 lat. O ile u niemowląt nie zauważono istotnych statystycznie różnic pomiędzy płciami, to już u 5-latków wyraźnie widoczne były różnice międzypłciowe. U dziewczynek wartości FA dla całej istoty białej były wyższe we wszystkich regionach mózgu. Szczególnie zaś duża różnica występowała dla tylnych i bocznych obszarów oraz dla prawej półkuli.
      W naszej próbce typowo rozwijających się zdrowych 5-latków odkryliśmy szeroko zakrojone różnice międzypłciowe we frakcjonowanej anizotropii istoty białej. Dziewczynki miały wyższą wartość FA we wszystkich obszarach, a różnice te były istotne. [...] W naszych badaniach uwidoczniliśmy znacząco większe różnice niż wcześniej opisywane. Uzyskane przez nas wyniki pokazują dymorfizm płciowy w strukturze rozwijającego się 5-letniego mózgu, z wyraźnie wykrywalnymi zmianami w wielu regionach, czytamy na łamach Human Brain Mapping.
      Autorzy przypuszczają, że różnice te mogą wynikać z różnej dynamiki rozwoju mózgu u obu płci. Przypominają też, że z innych badań wynika, iż w późniejszym wieku dynamika ta jest wyższa u chłopców, przez co z wiekiem różnice się minimalizują. To zaś może wyjaśniać, dlaczego autorzy niektórych badań nie zauważali różnic w próbkach starszych osób.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy ponad 100 lat temu z pewnej angielskiej kopalni węgla wydobyto skamieniałą rybią czaszkę, jej odkrywcy z pewnością nie zdawali sobie sprawy, jaką sensację skrywa ich znalezisko. Przeprowadzone niedawno badania tomograficzne wykazały, że w czaszce zwierzęcia sprzed 319 milionów lat zachował się mózg. To najstarszy znany nam dobrze zachowany mózg kręgowca.
      Organ ma około 2,5 cm długości. Widoczne są nerwy, dzięki czemu naukowcy mają szansę na lepsze poznanie wczesnej ewolucji centralnego układu nerwowego promieniopłetwych, największej współcześnie żyjącej gromady ryb, w skład której wchodzi około 30 000 gatunków. Odkrycie rzuca też światło na możliwość zachowania się tkanek miękkich kręgowców w skamieniałościach i pokazuje, że muzealne kolekcje mogą kryć liczne niespodzianki.
      Ryba, której mózg się zachował, to Coccocephalus wildi, wczesny przedstawiciel promieniopłetwych, który żył w estuariach żywiąc się niewielkimi skorupiakami, owadami i głowonogami. Tan konkretny osobnik miał 15-20 centymetrów długości. Naukowcy z Uniwersytetów w Birmingham i Michigan nie spodziewali się odkrycia. Badali czaszkę, a jako że jest to jedyna skamieniałość tego gatunku, posługiwali się wyłącznie metodami niedestrukcyjnymi. Na zdjęciach z tomografu zauważyli, że czaszka nie jest pusta.
      Niespodziewane odkrycie zachowanego w trzech wymiarach mózgu kręgowca daje nam niezwykłą okazję do zbadania anatomii i ewolucji promieniopłetwych, cieszy się doktor Sam Giles. To pokazuje, że ewolucja mózgu była bardziej złożona, niż możemy wnioskować wyłącznie na podstawie obecnie żyjących gatunków i pozwala nam lepiej zdefiniować sposób i czas ewolucji współczesnych ryb, dodaje uczona. Badania zostały opublikowane na łamach Nature.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Wydziału Medycyny Uniwersytetu w Pittsburghu są prawdopodobnie pierwszymi, którzy donoszą o istnieniu w ludzkim mózgu 12-godzinnego cyklu aktywności genetycznej. Co więcej, na podstawie pośmiertnych badań tkanki mózgowej stwierdzili, że niektóre elementy tego cyklu są nieobecne lub zburzone u osób cierpiących na schizofrenię.
      Niewiele wiemy o aktywności genetycznej ludzkiego mózgu w cyklach krótszych niż 24-godzinne. Od dawna zaś obserwujemy 12-godzinny cykl aktywności genetycznej u morskich, które muszą dostosować swoją aktywność do pływów, a ostatnie badania wskazują na istnienie takich cykli u wielu różnych gatunków, od nicienia C. elegans, poprzez myszy po pawiana oliwkowego.
      Wiele aspektów ludzkiego zachowania – wzorzec snu czy wydajność procesów poznawczych – oraz fizjologii – ciśnienie krwi, poziom hormonów czy temperatura ciała – również wykazują rytm 12-godzinny, stwierdzają autorzy badań. Niewiele jednak wiemy o tym rytmie, szczególnie w odniesieniu do mózgu.
      Na podstawie badań tkanki mózgowej naukowcy stwierdzili, że w mózgach osób bez zdiagnozowanych chorób układu nerwowego, w ich grzbietowo-bocznej korze przedczołowej, widoczne są dwa 12-godzinne cykle genetyczne. Zwiększona aktywność genów ma miejsce w godzinach około 9 i 21 oraz 3 i 15. W cyklu poranno-wieczornym dochodzi do zwiększonej aktywności genów związanych z funkcjonowaniem mitochondriów, a zatem z zapewnieniem mózgowi energii. Natomiast w godzinach popołudniowych i nocnych – czyli ok. 15:00 i 3:00 – zwiększała się aktywność genów powiązanych z tworzeniem połączeń między neuronami.
      O ile nam wiadomo, są to pierwsze badania wykazujące istnienie 12-godzinnych cykli w ekspresji genów w ludzkim mózgu. Rytmy te są powiązane z podstawowymi procesami komórkowymi. Jednak u osób ze schizofrenią zaobserwowaliśmy silną redukcję aktywności w tych cyklach, informują naukowcy. U cierpiących na schizofrenię cykl związany z rozwojem i podtrzymywaniem struktury neuronalnej w ogóle nie istniał, a cykl mitochondrialny nie miał swoich szczytów w godzinach porannych i wieczornych, gdy człowiek się budzi i kładzie spać, a był przesunięty.
      W tej chwili autorzy badań nie potrafią rozstrzygnąć, czy zaobserwowane zaburzenia cykli u osób ze schizofrenią są przyczyną ich choroby, czy też są spowodowane innymi czynnikami, jak np. zażywanie leków lub zaburzenia snu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...