Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Pajęcza nić jest jak mięsień?

Rekomendowane odpowiedzi

Nić pajęcza jest materiałem niezwykłym. Jest nie tylko pięć razy bardziej wytrzymała na rozciąganie od nici stalowej o tej samej masie, lecz dodatkowo jest bardziej elastyczna od gumy. Dzięki naukowcom z University of Akron dowiadujemy się o jeszcze jednej niezwykłej właściwości tego polimeru: zmienia on swoją długość pod wpływem zmian wilgotności powietrza, co oznacza, że może stać się materiałem do budowy sztucznych mięśni dla nanorobotów.

Jak wspomina autor badań nad pajęczymi nićmi, prof. Ali Dhinojwala z Wydziału Nauk o Polimerach na University of Akron, kurczenie się i rozszerzanie nici pod wpływem zmian wilgotności zaobserwował jego kolega z Wydziału Biologii, prof. Todd Blackledge. Naukowcy z zespołu prof. Dhinojwali postanowili wykorzystać to zjawisko w praktyczny sposób i zbudowali prosty układ zdolny do podnoszenia ciężarów.

Już podczas pierwszych obserwacji zauważono, że obniżenie wilgotności powietrza z 90% do 10% wystarcza, by nić o długości ok. 4 cm i średnicy 5,5 µm była w stanie podnieść w ciągu trzech sekund ciężarek ważący 9,5 mg na wysokość 0,65 mm. Co prawda oznacza to skrócenie się włókna zaledwie o 1,7%, lecz siła wytworzona w tym procesie, przekraczająca 50-krotnie siłe wytwarzaną przez ważące tyle samo włókno ludzkiego mięśnia, robi niemałe wrażenie. Zupełnie niesamowicie brzmi za to wielkość naprężeń, z jakimi radzi sobie skracająca się nić, wynosiły one bowiem aż... 40 megapaskali.

Proces zaobserwowany przez prof. Blackledge'a można wielokrotnie powtarzać bez utraty siły skurczu. Niestety, kurczliwość włókien jest stanowczo zbyt mała, by były one użyteczne w obecnej formie. Naukowcy z University of Akron liczą jednak, że opracowanie metod splatania nici w większe sznury pozwoli na znaczącą poprawę tego parametru bez utraty pozostałych cennych właściwości niezwykłego materiału. 

Zdaniem prof. Dhinojwali udoskonalona wersja pajęczych sieci może mieć wiele zastosowań. Wśród przykładowych sposobów wykorzystania tego tworzywa badacz wymienia m.in. konstrukcję siłowników dla robotów i nanomaszyn, a także systemy dostarczania leków, zawory reagujące na wilgotność powietrza, a nawet... systemy wytwarzania energii. Co ważne, wynalazki te byłyby przyjazne dla środowiska i wydajne energetycznie, co czyni je bardzo atrakcyjnymi z punktu widzenia wielu gałęzi przemysłu.

Ze względu na prawa autorskie zdjęcia układu stworzonego przez zespół z Akron są dostępne pod tym adresem.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Pewnego razu Xinhua Fu, naukowiec z Uniwersytetu Rolniczego Huazhong w chińskim Wuhan, zauważył, że w sieci aktywnych nocą pająków Araneus ventricosus łapią się niemal wyłącznie samce świetlikowatych z gatunku Abscondita terminalis. W sieciach nie było samic. Zaintrygowany tym spostrzeżeniem, postanowił bliżej przyjrzeć się temu zjawisku. Wraz z zespołem odkrył, że to pająki wymuszają na złapanych świetlikach nadawanie sygnałów, które przyciągają więcej ofiar.
      Obie płcie Abscondita terminalis nadają różne sygnały świetlne. Samce, by przyciągnąć samice, wysyłają wielokrotne impulsy za pomocą dwóch plamek świetlnych. Samice wabią samce pojedynczymi impulsami z jednej plamki. Samce aktywnie szukają samic latając, a te odpowiadają, czekając aż samiec przyleci.
      Fu zaczął podejrzewać, że pająki przyciągają samce świetlików w jakiś sposób manipulując ich zachowaniem. We współpracy z Daiqinem Li oraz Shichangiem Zhang z Uniwersytetu Hubei przeprowadził obserwacje polowe, przyglądając się pająkom i świetlikom. Okazało się, że w sieci łapie się więcej samców, gdy pająk jest w pobliżu niż wówczas, gdy go na sieci nie ma. Działo się tak dlatego, że gdy pająk był w pobliżu samce świetlików zmieniały nadawane sygnały na takie, przypominające sygnały samic. Naukowcy wykluczyli tym samym hipotezę, że zmiana sygnału zachodzi pod wpływem stresu, który ma miejsce, gdy świetlik złapie się w sieć. Istotna była tutaj obecność pająka.
      Bliższa analiza wykazała, że pająki manipulują sygnałami świetlików poprzez sekwencje owijania nicią i gryzienia swoich ofiar. Tak traktowany samiec świetlika zaczyna nadawać sygnały typowe dla samic i przyciąga w ten sposób kolejne samce, które łapią się w sieć. Bez kolejnych badań naukowcy nie są w stanie powiedzieć, czy to jad pająka czy sam akt gryzienia wywołuje u samców zmianę wzorca impulsów świetlnych.
      Wszystko natomiast wskazuje na to, że zachowanie pająka jest uruchamiane przez impulsy świetlne samca. Gdy naukowcy zakryli narządy świetlne samców, pająki nie wymuszały na nich zmiany trybu świecenia.
      Niewykluczone, że w naturze istnieje o wiele więcej tego typu interakcji drapieżnik-ofiara, w których drapieżnik wymusza na ofierze zachowania przyciągające kolejne ofiary.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pająki są uznawane za klasyczne drapieżniki owadożerne, tymczasem okazuje się, że ich dieta jest o wiele bardziej złożona i od czasu do czasu decydują się one nawet na posiłek wegetariański.
      Naukowcy już od jakiegoś czasu zdawali sobie sprawę, że niektóre pająki starają się wzbogacać menu rybami, żabami, a nawet nietoperzami. Teraz zespół z Uniwersytetu w Bazylei, Brandeis University oraz Uniwersytetu w Cardiff wykazał, że stawonogi te jadają również rośliny. Biolodzy przejrzeli pod tym kątem literaturę przedmiotu. Dzięki ich systematycznemu przeglądowi udowodniono, że różnego rodzaju rośliny (np. storczyki, drzewa, trawy czy paprocie) wchodzą w skład diety aż 10 rodzin pająków. Zjadane są różne ich elementy: nektar, pyłek, nasiona, tkanka liści, spadź i sok mleczny.
      Najważniejszą grupą pająków o wegetariańskich zwyczajach są skakunowate (Salticidae). To im przypisano aż 60% przypadków roślinożerności udokumentowanych w studium. Takim zwyczajom wydaje się sprzyjać kilka czynników: życie wśród roślin, mobilność, a także świetna zdolność wykrywania odpowiedniego pożywienia roślinnego.
      Pająki żywiące się roślinami występują na wszystkich kontynentach poza Antarktydą. Opisywane zachowanie jest jednak częściej dokumentowane w cieplejszych strefach. Autorzy publikacji z Journal of Arachnology dywagują, że może się tak dziać, bo spora liczba doniesień o wegetariańskiej diecie dotyczy nektaru, a rośliny produkujące duże jego ilości są tam bardziej rozpowszechnione.
      Zdolność pająków do pozyskiwania składników odżywczych z roślin poszerza ich bazę pokarmową. Może to być mechanizm, który pozwala przetrwać okresy niedoboru owadów. Ponadto dywersyfikacja jest korzystna z żywieniowego punktu widzenia, bo optymalizuje podaż dietetyczną - podsumowuje Martin Nyffeler z Uniwersytetu w Bazylei.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pająki z gatunku Argyroneta aquatica całe życie spędzają pod wodą, mimo że są przystosowane do oddychania powietrzem atmosferycznym. Jak to jest możliwe? Otóż ich ciała pokryte są milionami hydrofobowych włosków, które więżą powietrze wokół ciała pająka, zapewniając nie tylko zapas do oddychania, lecz służąc też jako bariera pomiędzy wodą a płucotchawkami zwierzęcia. Ta cienka warstwa powietrza zwana jest plastronem, a naukowcy od dziesięcioleci próbowali ją odtworzyć, by uzyskać materiał, który po zanurzeniu w wodzie będzie odporny na jej negatywne oddziaływanie, czy to na korozję czy na osadzanie na powierzchni bakterii lub glonów. Dotychczas jednak uzyskane przez człowieka plastrony rozpadały się pod wodą w ciągu kilku godzin.
      Naukowcy z  Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), Wyss Institute for Biologically Inspired Engineering at Harvard, Friedrich-Alexander-Universität Erlangen-Nürnberg w Niemczech Germany oraz fińskiego Aalto University poinformowali właśnie o uzyskaniu plastronu, który pozostaje stabilny pod wodą przez wiele miesięcy. Superhydrofobowy materiał, który odpycha krew i wodę, zapobiega osadzaniu się bakterii i organizmów morskich takich jak małże, może znaleźć bardzo szerokie zastosowania zarówno w medycynie, jak i przemyśle.
      Jeden z głównych problemów z uformowaniem się plastronu polega na tym, że potrzebna jest szorstka powierzchnia. Jak włoski na Argyroneta aquatica. Jednak nierówności na powierzchni powodują, że jest ona mechanicznie niestabilne, podatna na niewielkie zmiany temperatury, ciśnienia i niedoskonałości samej powierzchni. Dotychczasowe techniki wytwarzania powierzchni superhydrofobowych brały pod uwagę dwa parametry, a to nie zapewniało dostatecznej ilości danych o stabilności powietrznego plastronu umieszczonego pod wodą. Dlatego naukowcy z USA, Niemiec i Finlandii musieli najpierw zbadać, jakie jeszcze dane są potrzebne. Okazało się, że muszą uwzględniać nierówności powierzchni, właściwości molekuł na powierzchni, sam plastron, kąt styku między powietrzem a powierzchnią i wiele innych czynników. Dopiero to pozwoliło przewidzieć, jak powietrzny plastron zachowa się pod wodą.
      Wykorzystali więc stworzona przez siebie metodę obliczeniową i za pomocą prostych technik produkcyjnych, wykorzystali niedrogi stop tytanu do stworzenie powierzchni aerofilnej, na której tworzył się powietrzny plastron. Badania wykazały, że dzięki niemu zanurzony w wodzie materiał pozostaje suchy przez tysiące godzin dłużej, niż podczas wcześniejszych eksperymentów.
      Wykorzystaliśmy metodę opisu, którą teoretycy zasugerowali już przed 20 laty i wykazaliśmy, że nasza powierzchnia jest stabilna. Oznacza to, że uzyskaliśmy nie tylko nowatorską, ekstremalnie trwałą powierzchnię hydrofobową, ale mamy też podstawy do konstruowania takich powierzchni z różnych materiałów, mówi Alexander B. Tesler z Friedrich-Alexander-Universität Erlangen-Nürnberg.
      Naukowcy stworzyli odpowiednią powierzchnię, a następnie wyginali ją, skręcali, polewali zimną i gorącą wodą, pocierali piaskiem i stalą, by pozbawić ją właściwości aerofilnych. Mimo to utworzył się na niej plastron, który przetrwał 208 dni zanurzenia w wodzie i setki zanurzeń we krwi. Plastron taki znacząco zmniejszył wzrost E.coli, liczbę wąsonogów przyczepiających się do powierzchni i uniemożliwił przyczepianie się małży.
      Nowo opracowana powierzchnia może znaleźć zastosowanie w opatrunkach, zmniejszając liczbę infekcji po zabiegach chirurgicznych czy w biodegradowalnych implantach. Przyda się też do zapobiegania korozji podwodnych instalacji. Być może w przyszłości uda się ją połączyć z opracowaną na SEAS superśliską warstwą ochronną SLICK (Slippery Liquid Infused Porous Surfaces), co jeszcze lepiej powinno chronić całość przed wszelkimi zanieczyszczeniami.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Mieszkające w naszych domach pająki unikają powierzchni, po których przeszły mrówki pewnego agresywnego gatunku. To wskazuje, że pozostawiają one po sobie jakiś chemiczny ślad. A ten można by wykorzystać do stworzenia ekologicznych środków odstraszających pająki, dzięki którym np. ludzie z arachnofobią mogliby czuć się bezpieczniej w swoich domach.
      Andreas Fischer z kanadyjskiego Simon Fraser University specjalizuje się w badaniu feromonów pająków. Poszukuje też praktycznych sposobów na utrzymanie zdrowego ekosystemu, przy jednoczesnym zniechęceniu pająków do odwiedzania ludzkich domów. Uczony mówi, że z jednej strony mamy pestycydy, które zabijają wszystko i zaburzają równowagę w ekosystemie, z drugiej zaś domowe porady, takie jak stosowanie skórki cytrynowej czy olejku migdałowego, w żaden sposób nie działają na pająki.
      Ostatnio Fischer zwrócił uwagę na prace innych naukowców, z których wynikało, że tam, gdzie jest więcej mrówek, występuje mniej pająków.
      Uczony zebrał mrówki z trzech różnych gatunków oraz samice czterech gatunków pająków często występujących w północnoamerykańskich domach. Najpierw przez 12 godzin mrówki przebywały na papierowym filtrze w szklanej klatce. Mrówki dobrano równo pod względem wagi, co oznacza, że w przypadku jednego gatunku do eksperymentu użyto 43 mrówek, w przypadku zaś innego – zaledwie trzech.
      Po 12 godzinach mrówki z klatki usuwano i na 24 godziny umieszczano w niej samice pająków, obserwując, jak się zachowuje. Okazało się, że większość czarnych wdów (Latrodectus hesperus), fałszywych czarnych wdów (Steatoda grossa) oraz pająków hobo (Eratigena agrestis), unika papierowego filtra, po którym chodziły wścieklice zwyczajne (Myrmica rubra). Podobne, chociaż nie tak silne zachowanie, zauważono u krzyżaka ogrodowego (Araneus diadematus).
      Fischer sądzi, że pająki mogą unikać mrówek, gdyż wścieklice zwyczajne są szczególnie agresywne, mogą otaczać i zabijać pająki, które weszły na ich teren. Pająki mogły więc wyewoluować tak, by unikać tego gatunku. Hipoteza ta jest tym bardziej uprawniona, że pająki nie unikały miejsc, po których chodziły mrówki z gatunków hurtnica pospolita (Lasius niger) i Camponotus modoc.
      Uczony i jego koledzy nie wiedzą jeszcze, co konkretnie odstrasza pająki. Mają jednak nadzieję, że wkrótce się dowiedzą. A gdy odnajdą roznoszony przez mrówki środek chemiczny, którego boją się pająki, chcą rozpocząć eksperymenty nad stworzeniem jego wersji do użycia w domu.
      Fischer nie zaleca jednocześnie zbierania mrówek i chronienia w ten sposób domów przed pająkami. Ugryzienie wścieklicy zwyczajnej jest bardzo bolesne, a mrówek trudno jest się pozbyć. Stałyby się w domu większym problemem niż pająki, stwierdza.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ekstremalne zdarzenia pogodowe, np. tropikalne cyklony, wywierają ewolucyjny wpływ na populacje pająków żyjące w regionach podatnych na burze. Agresywne osobniki mają bowiem największe szanse na przetrwanie.
      Kanadyjczycy wyjaśniają, że wściekłe podmuchy wiatru mogą zniszczyć drzewa, zerwać wszystkie liście i rozrzucić szczątki po dnie lasu, radykalnie zmieniając habitaty i presje selekcyjne oddziałujące na wiele organizmów.
      [Co istotne] przez wzrost poziomu mórz częstość występowania takich tropikalnych burz będzie rosła - zaznacza Jonathan Pruitt z McMaster University.
      Zespół Pruitta badał żeńskie kolonie pająków Anelosimus studiosus. Te omatnikowate żyją wzdłuż Zatoki Meksykańskiej i atlantyckiego wybrzeża USA i Meksyku, czyli dokładnie na trasie tropikalnych cyklonów tworzących się w basenie Atlantyku między majem a listopadem.
      Autorzy publikacji z pisma Nature Ecology & Evolution podkreślają, że obserwowanie i dokumentowanie skutków ekologicznych ekstremalnych wydarzeń pogodowych jest bardzo trudne logistycznie, bo są one definiowane jako zdarzenia Black Swan. W książce pt. "Black Swan. The impact of the Highly Improbable" Nicolas Taleb, finansista z Wall Street, wytłumaczył, że "czarny łabędź" to zdarzenie 1) z gruntu nieprzewidywalne (ewentualnie prawdopodobieństwo jego zajścia jest szacowane jako skrajnie niskie), 2) niosące za sobą spore konsekwencje i 3) mające retrospektywny charakter; po zajściu takiego zdarzenia ludzie zawsze doszukują się przyczyn, czyniąc je przewidywalnym i wytłumaczalnym (jest wytłumaczalne i traktowane jako oczywiste, ale dopiero PO wystąpieniu).
      By przeprowadzić badania, naukowcy musieli więc rozwiązać szereg problemów logistycznych i metodologicznych, m.in. przewidzieć trajektorię cyklonów. Populacje próbkowano 2-krotnie: przed uderzeniem cyklonu i w ciągu 48 godzin od jego przejścia.
      Próbkowano 240 kolonii z podatnych na burze regionów przybrzeżnych i porównywano je do stanowisk kontrolnych. Biologów szczególnie interesowała kwestia, czy ekstremalna pogoda, w tym przypadku burza tropikalna Alberto oraz huragany Florence i Michael z zeszłego roku, spowodowała, że zaczęły przeważać pewne pajęcze cechy.
      Generalnie A. studiosus mogą być łagodne albo agresywne (to cechy dziedziczne). Agresywność kolonii jest określana/definiowana przez 1) szybkość i liczbę atakujących ofiarę, 2) tendencję do zjadania samców i jaj czy 3) podatność na infiltrację przez drapieżne pająki.
      Agresywne kolonie lepiej sobie radzą ze zdobywaniem zasobów, gdy jest ich mało, ale z drugiej strony są bardziej podatne na walki wewnętrzne, gdy przez długi czas brakuje pokarmu albo gdy kolonia ulega przegrzaniu.
      Tropikalne cyklony często wpływają na oba rodzaje stresorów: zmieniają liczbę latających ofiar i zwiększają ekspozycję słoneczną w bardziej otwartym piętrze koron drzew - wyjaśnia Pruitt.
      Analizy sugerowały, że po przejściu tropikalnego cyklonu kolonie z bardziej agresywnymi reakcjami (żerowaniem) produkowały więcej jaj. Do wczesnej zimy przeżywało też więcej młodych pająków. Taki sam trend obserwowano w przypadku licznych burz różniących się wielkością, czasem trwania oraz intensywnością.
      Zgromadzone dane sugerują, że dobór wywołany cyklonami napędza ewolucję ważnych cech funkcjonalnych.
       


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...