Jump to content
Forum Kopalni Wiedzy

Recommended Posts

W aktywnym wulkanie Mount St Helens pracuje pierwsza automatyczna sieć wyspecjalizowanych czujników, które komunikują się pomiędzy sobą i wysyłają dane do satelitów oraz stacji naziemnych. System potrafi w razie potrzeby, na przykład gdy jedno z urządzeń ulegnie uszkodzeniu, przeorganizować swój sposób komunikacji tak, by nadal zbierać i wysyłać dane. Zespół z należącego do NASA Jet Propulsion Laboratory ma nadzieję, że w przyszłości takie sieci będą wykorzystywane do badań geologicznych w Układzie Słonecznym.

Na świecie od pewnego czasu stosuje się systemy monitorujące wulkany. Jeden z nich istnieje np. na Mount Erbus na Antarktydzie. Jednak tego typu urządzenia wymagały dotychczas wielu dni wiercenia w skałach i instalowania w nich czujników. Praca była więc ciężka, kosztowna i niebezpieczna.

Tymczasem nowy system został zainstalowany błyskawicznie. Piętnaście czujników zostało opuszczonych z helikoptera do krateru wulkanu oraz rozstawionych wokół niego. Stalowe urządzenia wielkości walizki wyposażono w trzy ramiona każde. W "walizce" zamknięto czujniki odpowiedzialne za wykrywanie i rejestrowanie trzęsień ziemi, ciepła wydobywającego się z wulkanu, chmur popiołów oraz GPS, który umożliwia dokładne określenie pozycji urządzenia oraz wyliczenie miejsca, w którym dochodzi do wstrząsów podłoża.

Czujniki po opuszczeniu ze śmigłowca samodzielnie nawiązały ze sobą łączność, tworząc sieć podobną do Internetu. W razie uszkodzenia jednego z węzłów, wymiana danych zostanie przeorganizowana, więc system nadal będzie działał.

Urządzenia nie tylko gromadzą dane, ale dokonują ich analizy. To z kolei pozwala na monitorowanie wulkanu w czasie rzeczywistym. Informacje przesyłane są do pobliskiego Johnston Ridge Obserwatory. Opóźnienie wynosi zaledwie jedną sekundę, więc pracujący w obserwatorium specjaliści w sytuacjach awaryjnych nie muszą dokonywać analizy, by wiedzieć, co się może wydarzyć.

System komunikuje się też z satelitą, któremu może wydawać polecenia. Jeśli np. czujniki wykryją odbiegające od normy zjawisko, np. pojawienie się nowego źródła ciepła, wyślą do satelity polecenie, by wykonał zdjęcia. Interakcja przebiega w obie strony. Satelita może służyć naukowcom do błyskawicznego aktualizowania oprogramowania sieci urządzeń.

Dalszy rozwój tego typu technik będzie niezwykle przydatny podczas badań kosmosu, gdzie nie będzie możliwości długotrwałego, precyzyjnego konfigurowania sieci czujników czy wymiany uszkodzonych urządzeń.

Taka sieć może zostać na przykład użyta przez automatyczną łódź podwodną, która w przyszłości będzie badała ocean znajdujący się pod zamarzniętą powierzchnią Europy - księżyca Jowisza.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Similar Content

    • By KopalniaWiedzy.pl
      Podczas formowania się Układu Słonecznego mogło dość często dochodzić do zderzeń tworzących się planet. Podczas jednej z takich kolizji powstał ziemski Księżyc. Jednak to, co spotkało Jowisza jest czymś wyjątkowym.
      Astronomowie z amerykańskiego Rice University i chińskiego Uniwersytetu Sun Jat-sena uważaja, że znaleźli wyjaśnienie dziwnych wyników pomiarów pola grawitacyjnego Jowisza dostarczonych przez sondę Juno.
      Wiodące teorie dotyczące formowania się planet mówią, że Jowisz rozpoczął swoje życie jako gęsta skalista lub lodowa planeta i z czasem zyskał olbrzymią warstwę bardzo gęstej atmosfery złożonej z gazów i pyłów z rodzącego się Układu Słonecznego. Jednak odczyty z Juno wskazują, że jądro Jowisza jest znacznie większe i mniej gęste, niż w takim scenariuszu. To było zastanawiające. Wskazywało, że coś się stało z jądrem. W grę wchodzi wielka kolizja, mówi współautor badań Andrea Isella z Rice University.
      Uczony przyznaje, że bardzo sceptycznie podszedł do hipotezy głównego autora badań, Shanga-Fei Liu, mówiącej o zderzeniu, które rozbiło jądro Jowisza i wymieszało je z rzadszymi częściami planety. To brzmiało bardzo nieprawdopodobnie. Jednak Shang-Fei przekonał mnie, za pomocą wielu obliczeń, że nie jest to nieprawdopodobne, stwierdził Isella.
      Naukowcy przeprowadzili tysiące symulacji komputerowych i stwierdzili, że szybko rosnący Jowisz zaburzył orbity pobliskich protoplanet. Uruchomiono więc kolejne symulacje, by sprawdzić, jakie – w różnych warunkach – było prawdopodobieństwo, że doszło do kolizji. Okazało się, że podczas pierwszych kilku milionów lat swojego istnienia Jowisz mógł z co najmniej 40-procentowym prawdopodobieństwem zderzyć się z rodzącą się planetą i ją wchłonął. Modelowanie komputerowe wykazało, że gdyby Jowisz wciągnął planetę o masę Ziemi, opadałaby ona na jego jądro i rozpadłaby się w gęstej atmosferze. Jądro Jowisza pozostałoby nietknięte. Jedyny scenariusz, wyjaśniający, dlaczego obecnie jądro Jowisza wygląda tak, jak obecnie, zakłada, że protoplaneta, z którą się zderzył, miała masę około 10-krotnie większą od masy Ziemi, mówi Liu.
      Obliczenia wskazują, że tak masywna protoplaneta rozbiła jądro Jowisza. Jeśli nawet do tego wydarzenia doszło 4,5 miliarda lat temu, to potrzeba będzie kolejnych miliardów lat, by jądro Jowisza powróciło do stanu sprzed zderzenia, mówi Isella.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na Uniwersytecie Stanforda powstał bezprzewodowy, niezasilany baterią czujnik do pomiaru przepływu krwi. Ponieważ jest kompaktowy i biodegradowalny, nie musi być usuwany. W razie potrzeby ostrzeże lekarzy, że doszło do zamknięcia światła naczynia.
      Pomiar przepływu krwi jest kluczowy w wielu dziedzinach medycyny, dlatego bezprzewodowy, biodegradowalny czujnik może mieć implikacje m.in. dla chirurgii naczyniowej, rekonstrukcyjnej, kardiochirurgii czy transplantologii - wyjaśnia prof. Paige Fox.
      Amerykanie podkreślają, że monitorowanie wyników operacji angiologicznych jest trudne, gdyż często pierwsze symptomy problemów pojawiają się, gdy jest już za późno. Do tego czasu pacjent potrzebuje kolejnej operacji, która wiąże się z podobnym ryzykiem, co 1. zabieg.
      Dzięki nowemu czujnikowi proces gojenia można monitorować w czasie rzeczywistym, co daje możliwość wcześniejszej interwencji.
      Czujnik owija się ściśle wokół naczynia. Przepływająca krew uciska jego wewnętrzną powierzchnię. Gdy kształt powierzchni się zmienia, wpływa to na zdolność czujnika do magazynowania ładunku elektrycznego. Lekarze mogą to wykryć za pomocą urządzenia przybliżanego do skóry, które komunikuje się z anteną sensora. W przyszłości czytniki można by integrować np. ze smartfonem.
      Na początku naukowcy testowali czujnik, przepompowując powietrze przez rurkę rozmiarów tętnicy. Później chirurg Yukitoshi Kaizawa wszczepił sensor wokół naczynia szczura. Okazało się, czujnik z powodzeniem przekazywał dane na temat przepływu krwi do bezprzewodowego czytnika. Na razie Amerykanów interesowało wykrywanie całkowitego zamknięcia światła naczynia, ale istnieją wskazówki, że przyszłe wersje sensora będą potrafiły identyfikować bardziej subtelne fluktuacje przepływu krwi.
      Czujnik jest bezprzewodową wersją technologii opracowanej przez inżyniera chemika Zhenana Bao z myślą o protezach zapewniających wrażenia dotykowe. By można było myśleć o monitoringu przepływu krwi, zespół z Uniwersytetu Stanforda musiał zmodyfikować istniejące materiały z czujników, tak by z jednej strony były one wrażliwe na pulsowanie krwi, a z drugiej pozostawały na tyle sztywne, by zachowywać kształt. Trzeba też było przesunąć antenę do miejsca, gdzie będzie bezpieczna i odseparowana od pulsowania krwi. Oprócz tego kondensator musiał się nadawać do owijania wokół naczynia.
      To bardzo ekscytujący projekt, który wymagał wielu rund eksperymentów i przeprojektowywania - podsumowuje dr Levent Beker.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astri Polska dostarczyła urządzenie dla misji badawczej Europejskiej Agencji Kosmicznej (ESA), której celem będzie zbadanie Jowisza i jego lodowych księżyców. Urządzenie będzie miało istotne znaczenie dla powodzenia tej misji i jest najbardziej zaawansowanym technicznie produktem opracowanym przez warszawską firmę.
      JUICE (JUpiter ICy moons Explorer) to misja badawcza Europejskiej Agencji Kosmicznej, która ma za zadanie przeprowadzić badania Jowisza i jego trzech lodowych księżyców. Start sondy planowany jest na rok 2022. Urządzenie dostarczane przez Astri Polska zostanie podłączone do sondy i umożliwi przetestowanie jej systemów elektronicznych, przed wysłaniem w przestrzeń kosmiczną. Jest to ważny etap każdego programu kosmicznego, ponieważ po rozpoczęciu misji inżynierowie nie mają już możliwości dokonania modyfikacji systemów urządzenia umieszczonego na orbicie. Docelowo, warszawska firma przekaże dla misji JUICE jeszcze jedno urządzenie tego typu oraz cyfrowe środowisko testowe, które pozwoli na przetestowanie oprogramowania obsługującego komputer pokładowy sondy.
      Przekazanie urządzenia dla misji JUICE jest ważnym wydarzeniem dla Astri Polska. Cieszymy się, że nasz produkt spełnił rygorystyczne wymagania i odegra istotną rolę we flagowym programie Europejskiej Agencji Kosmicznej. Warto podkreślić, że od strony technicznej, urządzenie dla misji JUICE, jest najbardziej zaawansowanym produktem spośród wszystkich, które dostarczyliśmy dotychczas dla europejskich programów kosmicznych  – powiedziała Iuliia Strotska, Business Development Manager w Astri Polska.
      Astri Polska jest liderem polskiego sektora kosmicznego pod względem współpracy przemysłowej z Europejską Agencją Kosmiczną (ESA), dla której tylko w tym roku dostarczy aż 10 gotowych produktów. Będą to m.in.: systemy elektroniczne dla satelitów meteorologicznych, telekomunikacyjnych i środowiska testowe dla odbiorników nawigacji satelitarnej GNSS przeznaczonych do zastosowań kosmicznych. W nadchodzącym roku, firma planuje dalszy wzrost zaangażowania w projekty ESA. W tym celu firma zamierza zaproponować ESA autorską koncepcję innowacyjnej platformy do testowania satelitów.
      Opracowanie modułowego systemu do testowania satelitów będzie kolejnym krokiem milowym Astri Polska. Zakładamy, że dzięki jego uniwersalności będziemy mogli wpłynąć na obniżenie kosztów związanych z realizacją programów kosmicznych, co da nam dużą przewagę konkurencyjną na rynku w tej dziedzinie – powiedziała Strotska.
      Astri Polska specjalizuje się w projektowaniu i produkcji urządzeń dla wiodących europejskich programów kosmicznych oraz projektowaniu dedykowanych usług i aplikacji w oparciu o dane pochodzące z satelitów. Od powstania w 2010 r. firma zaangażowana była w ok. 50 projektów związanych z rozwojem technologii kosmicznych i satelitarnych. W chwili obecnej, firma realizuje ok. 20 projektów, zatrudniając 80 polskich inżynierów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie odkryli 12 nieznanych dotychczas księżyców Jowisza. Tym samym wiemy, że planeta ta posiada co najmniej 79 naturalnych satelitów i jest pod tym względem rekordzistką w Układzie Słonecznych. Wśród nowo odkrytych księżyców mamy 11 standardowych i jeden, o którym astronomowie stwierdzili, że jest dziwaczny. Księżyce zauważył wiosną 2017 roku zespół kierowany przez Scotta Shepparda z Carnegie Institution for Science. Naukowcy prowadzili poszukiwania potencjalnej 9. Planety, która może znajdować się za Plutonem.
      Tak się złożyło, że w naszym polu obserwacyjnym znalazł się Jowisz, więc mogliśmy przy okazji rozejrzeć się za nieznanymi księżycami tej planety, mówi Sheppard. Dane zdobyte przez jego zespół zostały wykorzystane przez Garetha Williamsa z Minor Planet Center do obliczenia orbin nowo odkrytych księżyców. Trzeba przeprowadzić kilka obserwacji, by potwierdzić, że dany obiekt rzeczywiście krąży wokół Jowisza. Dlatego cały ten proces zajął rok, wyjaśnia Williams.
      Dziewięć ze wspomnianych księżyców stanowi część większego zbioru satelitów Jowisza, które krążą wokół planety w kierunku przeciwnym do kierunku jej obrotu. Te odległe księżyce są zgromadzone w co najmniej trzech grupach i mogą być pozostałościami większych księżyców, które rozpadły się wskutek zderzeń z asteroidami, kometami lub innymi księżycami. Każdy z tych dziewięciu księżyców okrąża Jowisza w ciągu około dwóch lat.
      Dwa kolejne księżyce, to część bliższej grupy, która krąży zgodnie z ruchem obrotowym Jowisza. Także i one, przez podobieństwo swoich orbit, są uważane za pozostałość po większym księżycu. Obiegają one Jowisza w czasie nieco krótszym niż rok.
      Odkryliśmy też dziwaka, który ma orbitę zupełnie inną, niż wszystkie pozostałe księżyce Jowisza. To także najprawdopodobniej najmniejszy ze znanych nam księżyców tej planety. Jego średnica wynosi mniej niż kilometr, mówi Sheppard. Orbita tego księżyca, który porusza się zgodnie z ruchem obrotowym Jowisza, przecina orbity dalszych księżyców, a że porusza się on w przeciwnym kierunku do nich, prawdopodobnie w końcu dojdzie do zderzenia. To bardzo niestabilna sytuacja. Seria takich zderzeń szybko doprowadzi do rozpadnięcia się tych obiektów w pył.
      Naukowcy sądzą, że dziwak to ostatnia pozostałość po większym księżycu, który miał pewien udział w powstaniu zgrupowania odległych księżyców poruszających się w przeciwną stronę do ruchu obrotowego planety. Odkrywcy zaproponowali dla dziwnego księżyca nazwę Valetudo, na cześć praprawnuczki Jowisza, bogini zdrowia i higieny (gr. Hygieja).
      Istnienie tak dużej liczby niewielkich księżyców wskazuje, że powstały one po okresie formowania się planet. Księżyce te mają średnice od 1 do 3 kilometrów. Gdyby istniały w okresie formowania się planet, na ich ruch mocno wpływałyby gaz i pył, tworzące dysk protoplanetarny, z którego powstawały planety. Opór tworzony przez gaz i pył powodowałby, że małe księżyce zaczęłyby po spirali opadać na Jowisza. Jako, że wciąż istnieją, musiały powstać po okresie formowania się planet.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy przed 12 000 lat doszło do niemal całkowitego zatrzymania transportu ciepła w Atlantyku Europa doświadczyła ciężkich zim, po których następowały gorące lata, susze i fale upałów. Podobny scenariusz może czekać nas już wkrótce.
      W ostatnich latach w centralnej części Północnego Atlantyku rejestrowane są wyjątkowo niskie temperatury, a to silny wskaźnik poważnego osłabienia atlantyckiej południkowej cyrkulacji wymiennej (AMOC). Zdaniem naukowców zjawisko to jest najsłabsze od 1500 lat. Większość modeli klimatycznych przewiduje dalsze osłabianie AMOC w obliczu globalnego ocieplenia, chociaż całkowite zaniknięcie cyrkulacji wydaje się mało prawdopodobne. Jednak z badań klimatycznych wiemy, że do pojawienia się drastycznych zmian klimatycznych nie jest potrzebne całkowite zaniknięcie AMOC. Wystarczy jego osłabienie.
      Wspomniany na wstępie okres sprzed 12 000 lat, młodszy dryas, to ostatni i jeden z najbardziej ekstremalnych przypadków gwałtownego oziębienia, do którego doszło w okresie ocieplania się klimatu i wychodzenia z epoki lodowej.
      Wiemy, że do osłabienia AMOC może dojść w okresie szybkiego ocieplenia. Osłabienie cyrkulacji może doprowadzić do pojawienia się niezwykle zimnych zim i bardzo gorących lat z zabójczymi falami upałów i suszami włącznie.
      Symulacje komputerowe pokazują, że mechanizm związany z zimnym oceanem i gorącymi latami ma związek z tak zwanym blokowaniem atmosferycznym. Taki blok składa się z systemów wysokiego ciśnienia, które pozostają niemal nieruchome przez okres od pięciu dni do nawet wielu tygodni. Prowadzi to do ekstremalnych zjawisk pogodowych. Gdy taki blok pojawia się nad Europą, to w zimie odcina nasz kontynent od ciepłych wiatrów z zachodu, a w lecie od chłodnych wiatrów z zachodu. W efekcie mamy do czynienia z niezwykłymi falami gorąca lub chłodu.

      « powrót do artykułu
×
×
  • Create New...