Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Lasery i chłodzenie myśliwców
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Chciałbyś uchwycić na żywo przemianę chemiczną we wnętrzu komórki? A może zrewolucjonizować produkcję mikrochipów drukując ścieżki w warstwie grubej na zaledwie 100 mikronów? Takie i wiele innych celów pozwala osiągnąć najnowszy femtosekundowy laser stworzony przez zespół naukowców pod kierunkiem dr. Jurija Stepanenki.
Źródeł światła laserowego jest dziś bardzo dużo. Każde ma swoje charakterystyki i służy do czegoś innego: np. do obserwacji gwiazd, leczenia, mikroobróbki powierzchni. Naszym celem jest rozwijanie nowych – mówi Jurij Stepanenko, szef zespołu Ultraszybkich Technik Laserowych przy Instytucie Chemii Fizycznej PAN. Zajmujemy się źródłami, które produkują mega-krótkie impulsy światła. Naprawdę bardzo, bardzo krótkie – femtosekundowe (to część sekundy z 15 zerami po przecinku). W tej skali zachodzą np. reakcje chemiczne w komórce. Żeby je zobaczyć, musimy „zrobić zdjęcie” właśnie w takim ultrakrótkim czasie. I dzięki nowemu laserowi to się udaje.
Naszego źródła możemy też używać do bardzo precyzyjnego usuwania materiałów z różnych powierzchni bez ich zniszczenia – opowiada naukowiec. Moglibyśmy tą metodą np. precyzyjnie oczyścić Monę Lisę nie uszkadzając warstw farby. Zdjęlibyśmy tylko kurz i brud, warstwę grubości jakichś 10 mikronów – precyzuje dr Stepanenko, jeden z autorów pracy opublikowanej niedawno w Journal of Lightwave Technology.
Ale do takich prac nasz laser jest nawet zbyt precyzyjny – zaznacza dr Bernard Piechal, współautor publikacji. Do tego wystarczają takie nanosekundowe, czyli o tysiąckrotnie dłuższych czasach trwania impulsu . Tamte nie potrafiłyby jednak, powiedzmy, rysować ścieżek o precyzyjnie zaplanowanej głębokości w ultracienkich materiałach, np. usuwając złoto napylone na mikrochipy z precyzyjną regulacją grubości usuwanej warstwy. A nasz laser to potrafi!
Potrafi też robić otworki w hartowanym szkle albo ultracienkich, krzemowych płytkach. Laser nanosekundowy w takich warunkach stopiłby krzem albo „potłukł” szkło, bo wytwarza za dużo ciepła. Za dużo energii jest skupione lokalnie, na bardzo niewielkiej powierzchni. Nasz działa stanowczo, ale delikatnie – uśmiecha się dr Stepanenko.
Chcieliśmy, żeby nasze źródło spełniało dwa warunki: było jak najmniej podatne na mechaniczne zakłócenia i było mobilne – wyjaśnia dr Piechal. Nie chcieliśmy tworzyć wielkiej, nieruchomej konstrukcji.
Z pomocą zespołowi przyszły lasery światłowodowe. Taki laser to w zasadzie światłowód zamknięty w pierścień. Impuls laserowy w nim biega nie będąc narażonym na mechaniczne zakłócenia. Światłowód można dotykać, przenosić go, nawet wstrząsnąć bez narażania stabilności impulsu. Oczywiście, gdyby światło tylko tak biegało w kółko, nie byłoby do niczego przydatne, dlatego część tego impulsu jest w jednym miejscu wyprowadzana poza pętlę w postaci użytecznych błysków – wyjaśnia dr Stepanenko.
Tu dochodzimy do innego ważnego parametru takiego impulsowego lasera: częstotliwości, z jaką impulsy pojawiają się na wyjściu. W konwencjonalnych konstrukcjach częstotliwość ta zależy od długości światłowodowej pętli, w której biega impuls. Jej praktyczna długość to kilkadziesiąt metrów. Sporo, prawda? A co, gdybyśmy chcieli, aby błyski światła pojawiały się jak najczęściej? Można to zrobić zmniejszając obwód pierścienia, w którym impuls biega. Tyle że takie postępowanie ma swoje granice.
W naszych laserach najmniejsza pętelka daje impulsy co 60 nanosekund, a to wciąż za wolno jak na nasze marzenia – wyjaśnił badacz. Jak tę częstotliwość zwięszyć? Tu wkracza nowy wynalazek zespołu z IChF PAN: układ, który pozwala tę podstawową częstotliwość powielać, trochę jakby tworzyć częstotliwości harmoniczne na podstawowej częstotliwości struny gitary. Wykorzystujemy tzw. Harmonic Mode Locking – wyjaśnia dr Stepanenko. W naszej konstrukcji innowacyjne jest to, że potrafimy w kontrolowany sposób przełączać tę częstość powtórzeń i wyłuskiwać spośród wielu możliwych harmonicznych tylko jedną, tę która jest nam akurat potrzebna. Można powiedzieć, że jesteśmy jak gitarzysta: na pustej strunie, czyli naszej pętli światłowodu uzyskujemy określoną częstotliwość wynikającą z jej długości. Gdy przyłożymy palec dokładnie w połowie struny, to uzyskujemy tzw. drugą harmoniczną. Wysokość dźwięku rośnie o oktawę, a częstotliwość drgań rośnie dwa razy. Gdy przyłożymy palec w 1/3 długości struny, otrzymamy częstotliwość równo trzy razy wyższą, niż na pustej. W naszym przypadku podwyższamy częstotliwość impulsów kręcąc gałką. Możemy to robić tylko skokowo, za każdym razem uzyskując jakby kolejną harmoniczną, podobnie jak skokowo zmienia się harmoniczne w gitarze, ale zakres jest całkiem spory: możemy nasze świetlne harmoniczne zmieniać od 2 aż do 19 razy powyżej częstości podstawowej, czyli osiągać częstotliwość impulsów aż do nieco ponad 300 MHz.
Niezwykle ważne jest to, że uzyskiwane częstości są stabilne i można je precyzyjnie wyodrębniać. Jeśli wybierzemy sobie jakąś harmoniczną, to wszystkie pozostałe będą tak wytłumione, że ich „głośność” będzie jakieś 10 mln razy mniejsza niż tej wybranej. Można powiedzieć, że generujemy czysty dźwięk, a eliminujemy wszelkie szumy. Do tego im wyższa częstotliwość, tym lepiej jest zdefiniowana. Jesteśmy pierwsi, którym się to tak dobrze udało – mówi z dumą badacz.
Nam pozostaje czekać na wdrożenie wynalazku do bardziej przemysłowych zastosowań. Być może dzięki niemu zyskamy jeszcze cieńsze i lżejsze laptopy albo lepiej poznamy, co dzieje się we wnętrzu ludzkiego ciała.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W mediach pojawiły się informacje, z których wynika, że podczas targów CES 2020 Intel zaprezentuje technologię, która pozwoli na pozbycie się wentylatorów z notebooków. Takie rozwiązanie pozwoliłoby na budowanie lżejszych i cieńszych urządzeń. Podobno na targach mają zostać zaprezentowane gotowe notebooki z technologią Intela.
Część mediów pisze, że nowatorskie rozwiązanie to połączenie technologii komory parowej (vapor chamber) i grafitu. W technologii komory parowej płynne chłodziwo paruje na gorącej powierzchni, którą ma schłodzić, unosi się do góry, oddaje ciepło i ulega ponownej kondensacji. Rozwiązanie takie od lat stosuje się np. w kartach graficznych, jednak zawsze w połączeniu z wentylatorem, odprowadzającym ciepło z powierzchni, do której jest ono oddawane przez chłodziwo. Podobno Intel był w stanie pozbyć się wentylatora, dzięki poprawieniu o 25–30 procent rozpraszania ciepła.
Obecnie w notebookach systemy chłodzące umieszcza się pomiędzy klawiaturą a dolną częścią komputera, gdzie znajduje się większość komponentów wytwarzającyh ciepło. Intel miał ponoć zastąpić systemy chłodzące komorą parową, którą połączył z grafitową płachtą umieszczoną za ekranem, co pozwoliło na zwiększenie powierzchni wymiany ciepła.
Z dotychczasowych doniesień wynika również, że nowy projekt Intela może być stosowany w urządzeniach, które można otworzyć maksymalnie pod kątem 180 stopni, nie znajdzie więc zastosowania w maszynach z obracanym ekranem typu convertible. Podobno jednak niektórzy producenci takich urządzeń donoszą, że wstępnie poradzili sobie z tym problemem i w przyszłości nowa technologia trafi też do laptopów z obracanymi ekranami.
Niektórzy komentatorzy nie wykluczają, że Intel wykorzystał rozwiązania z technologii k-Core firmy Boyd, która wykorzystuje grafit do chłodzenia elektroniki w przemyśle satelitarnym, lotniczym i wojskowym.
Obecnie na rynku są dostępne przenośne komputery bez wentylatorów, są to jednak zwykle ultrabooki czy mini laptopy. Pełnowymiarowych maszyn jest jak na lekarstwo i nie są to rozwiązania o najmocniejszych konfiguracjach sprzętowych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Brytyjscy piloci będą mogli wkrótce skorzystać z prawdopodobnie najdoskonalszego na świecie symulatora samolotu myśliwskiego. Będzie on służył do ćwiczeń lądowania F-35 na pokładzie lotniskowca klasy Queen Elizabeth. To następca obecnie używanych jednostek klasy Invincible. Pierwszy nowy lotniskowiec wejdzie do służby w 2016 roku.
W BAE Systems powstał tymczasem niemal doskonały symulator. Steve Long, pilot testowy firmy mówi, że wrażenia podczas symulowanego lotu niewiele odbiegają od tych, doznawanych gdy siedzi się za sterami prawdziwego myśliwca. Jego słowa zdaje się potwierdzać redaktor serwisu Geek, który miał okazję korzystać z symulatora, na którym ćwiczą piloci bombowców B2 Stealth. Uważa on, że amerykańskiemu symulatorowi daleko do tego, co powstało w BAE Systems.
Lądowanie na lotniskowcu to jedno z najtrudniejszych zadań stojących przed pilotami. Podczas wojny w Wietnamie prowadzono na symulatorach badania, które polegały na pomiarze pracy serca pilotów w różnych warunkach. Okazało się, że piloci najbardziej bali się nie sytuacji, w której byli ostrzeliwani z działek czy rakiet. Najbardziej przerażało ich lądowanie w nocy na poruszającym się pokładzie lotniskowca.
-
przez KopalniaWiedzy.pl
Poza niedźwiedziami duże ssaki Europy Środkowej pozostają aktywne przez cały rok. W jaki sposób np. jelenie są w stanie przetrwać na zapasach tłuszczu? Obniżają tętno i temperaturę w kończynach. Jak widać, przechłodzone stopy nie zawsze są czymś niepożądanym...
Christopher Turbill i zespół z Uniwersytetu Weterynaryjnego w Wiedniu umieścili w żwaczach 15 samic jelenia specjalne nadajniki. Dzięki temu mogli przez 18 miesięcy, w tym 2 zimy, monitorować nie tylko tętno, ale i temperaturę żołądka. Zwierzęta żyły w prawie naturalnych warunkach, ale ściśle kontrolowano spożywane przez nie pokarmy, m.in. ilość i zawartość białka. Poza tym Austriacy śledzili temperaturę otoczenia i wykorzystywali dobrodziejstwa modelowania statystycznego, by oddzielić wpływ różnych czynników, np. połykania śniegu, na metabolizm.
Okazało się, że tętno jeleni spadało w zimie bez względu na to, ile pokarmu spożywały. Liczba uderzeń serca obniżała się stopniowo z 65-70 w maju do ok. 40 zimą, nawet jeśli zwierzętom dostarczano dużo wysokobiałkowej paszy. Tętno jest dobrym wskaźnikiem metabolizmu, a więc jego spadek pokrywał się idealnie z okresem, kiedy zwykle pożywienia brakuje - mimo że nasze zwierzęta zawsze mają co jeść. To pokazuje, że jelenie są w jakiś sposób zaprogramowane na zachowywanie rezerw w czasie zimy.
Znaczny wzrost tętna na wiosnę w okresie rozrodu nie był związany ze zmianą w dostępności pokarmu, dlatego należy go uznać za kolejny element wrodzonego programu. Tak jak naukowcy przewidywali, obniżenie zimą racji żywnościowych jeleni prowadziło do jeszcze większego obniżenia tętna. Co ciekawe, podobny efekt odnotowano również latem. Sugeruje to, że wywołuje go nie tylko spadek natężenia trawienia. Jelenie muszą aktywnie ograniczać metabolizm w odpowiedzi zarówno na zimę, jak i niedobory pożywienia w innych porach roku.
Austriacy ustalili, że spadkowi tętna towarzyszyło obniżenie temperatury żołądka. Oznacza to, że jelenie dostosowują wydatkowanie energii, regulując produkcję wewnętrznego ciepła. Ponieważ okazało się, że stosunkowo nieduże zmiany w temperaturze żołądka wpływały na metabolizm silniej niż można by się spodziewać, należało przypuszczać, że istnieje jakiś dodatkowy mechanizm oszczędzania energii.
W ramach wcześniejszych badań zademonstrowano, że jelenie potrafią skutecznie obniżać temperaturę kończyn i innych wystających części ciała, odpowiedzi na pytanie od dodatkowy mechanizm chłodzący trzeba zatem poszukiwać właśnie tutaj. W tym kontekście nieznaczny spadek temperatury żołądka stanowi zaledwie zmianę towarzyszącą.
Jeden z członków zespołu, Walter Arnold, sądzi, że duże zwierzęta wykorzystują do chłodzenia swoje gabaryty. Umożliwiają im drastyczne ograniczenie metabolizmu bez konieczności dużego zmniejszania temperatury wewnętrznej. Wystarczy chłodzenie peryferyjne.
-
przez KopalniaWiedzy.pl
Chroniąc się przed przejmującym chłodem arktycznych zim, renifery rozwinęły grubą okrywę włosową. Z jednej strony zapewnia im to doskonałą izolację przed chłodem i wiatrem, z drugiej jednak ogranicza możliwość chłodzenia podczas wysiłku. Chcąc sprawdzić, jak zwierzęta radzą sobie z tym problemem, biolodzy z Norwegii nauczyli je korzystać z bieżni. Dzięki temu odkryli, że stosują 3 strategie, w tym dwa rodzaje dyszenia. Sapanie z otwartym pyskiem pozwala przez pewien czas chłodzić mózg, później jednak włącza się selektywne oziębianie tego narządu.
Arnoldus Blix i Lars Folkow z Uniwersytetu w Tromsø współpracowali z Larsem Walløe z Uniwersytetu w Oslo. Naukowcy ustalili, że renifery chłodzą się, wdychając duże ilości zimnego powietrza, a ciepło oddają, dysząc.
Podczas eksperymentu panowie monitorowali temperaturę mózgu, tempo oddechu i przepływ krwi przez kilka głównych naczyń głowy. Nauczyli renifery, by kłusowały na bieżni z prędkością 9 km na godzinę w temperaturze od 10 do 30°C. Okazało się, że na początkowych etapach biegu tempo oddychania wzrastało z 7 do 260 oddechów na minutę. Wzrastał też napływ krwi do pyska. Wdychając zimne powietrze przez nos i odparowując wodę z błon śluzowych w zatokach (czyli dysząc z zamkniętym pyskiem), zwierzęta obniżały temperaturę krwi przed wysłaniem jej żyłą szyjną wewnętrzną do reszty organizmu, by schłodzić wytwarzające ciepło pracujące mięśnie. Po jakimś czasie renifery wystawiały mokry język. Język jest duży i dobrze unaczyniony. Nawilżanie sprzyja parowaniu, a więc rozpraszaniu ciepła - tłumaczy Blix. Strategia dyszenia jak pies sprawdzała się do momentu, kiedy temperatura mózgu rosła do krytycznych 39 stopni Celsjusza. Wtedy uruchamiany był wybiórczy mechanizm chłodzenia tego narządu: ostudzona żylna krew z nosa nie płynęła do ciała, ale prosto do głowy. Tam przemieszczała się siecią wymieniających ciepło naczyń, chłodząc krew tętniczą przeznaczoną dla mózgu.
Blix przyznaje, że początkowo nie sądził, że 3. z opisanych strategii się sprawdzi. Tylko 2% pojemności oddechowej przechodzi [przecież] przez nos zwierzęcia dyszącego z otwartym pyskiem. By zmienić zdanie, wystarczyło obliczyć ilość powietrza wdychanego przez biegnącego renifera oraz uwzględnić niską temperaturę otoczenia. Szybko stało się jasne, że zwierzę aspiruje wystarczająco dużo chłodnego powietrza, aby skutecznie chłodzić mózg.
Biolodzy zaobserwowali wcześniej podobną umiejętność u owiec i zastanawiali się, czy wszystkie kopytne potrafią selektywnie chłodzić swoje mózgi. Eksperymenty na reniferach uprawdopodobniają tę hipotezę.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.