Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Sztuczny neuron już wkrótce?

Recommended Posts

Badacze z Karolinska Institutet i Linköping University są już naprawdę blisko stworzenia sztucznego neuronu, który porozumiewa się ze swoimi naturalnymi odpowiednikami za pomocą neuroprzekaźników. Stosowane dotąd metody bazowały na stymulowaniu układu nerwowego impulsami elektrycznymi. W ten właśnie sposób działa np. implant ślimakowy. Elektroda jego wewnętrznej części pobudza bowiem bezpośrednio nerw słuchowy.

Problem z implantem polega jednak na tym, że stymulowane są wszystkie komórki w otoczeniu elektrody, co wywołuje niepożądane efekty. By temu zaradzić, Szwedzi posłużyli się przewodzącym prąd plastikiem. Uzyskali nowy typ elektrody dostawczej, która wydziela neuroprzekaźniki. Ma to jeden duży plus – na dany związek reagują tylko neurony wyposażone w odpowiednie receptory.

Zespół zademonstrował, że dzięki elektrodzie dostawczej da się kontrolować słyszenie u świnek morskich. Zdolność dostarczania dokładnych dawek neuroprzekaźników otwiera zupełnie nowe możliwości korygowania systemu sygnalizacji, który nie działa prawidłowo w wielu chorobach neurologicznych – podkreśla profesor Agneta Richter-Dahlfors, prowadząca badania razem z prof. Barbarą Canlon.

Przyszłe prace skoncentrują się na skonstruowaniu niewielkiego programowalnego elementu, wszczepianego do organizmu pacjenta. Działałby on tak często, jak trzeba, wydzielając precyzyjnie odmierzone dawki neuroprzekaźników. Obecnie Szwedzi zajmują się tego typu rozwiązaniami dla chorych z niedosłuchem/głuchotą, padaczką i parkinsonizmem.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Kwasy omega-3, które występują m.in. w olejach rybich, chronią nerwy przed uszkodzeniem i przyspieszają ich regenerację. To doskonała wiadomość dla pacjentów, którzy wskutek choroby czy urazu zmagają z bólem, paraliżem czy osłabieniem siły mięśniowej.
      Naukowcy z Queen Mary, University of London, których artykuł ukazał się w Journal of Neuroscience, skoncentrowali się na komórkach nerwów obwodowych. Mogą się one regenerować, ale mimo postępów w zakresie chirurgii, dobre rezultaty osiąga się raczej przy lekkich urazach.
      Na początku Brytyjczycy przyglądali się izolowanym mysim neuronom. Rozciągając je lub pozbawiając dopływu tlenu, symulowali uszkodzenia powstające podczas wypadku lub urazu. Oba zabiegi zabiły wiele komórek, ale podanie kwasów omega-3 zadziałało jak zabezpieczenie, znacznie ograniczając śmierć komórkową. W następnym etapie akademicy badali nerw kulszowy gryzoni. Stwierdzili, że dzięki kwasom omega-3 regenerował się szybciej i w większym zakresie. Dodatkowo zmniejszało się prawdopodobieństwo zaniku mięśni w następstwie uszkodzenia nerwu.
    • By KopalniaWiedzy.pl
      System kontroli lotu ważek to interesująca kwestia, ale nie dało się jej badać przy użyciu dotychczasowego sprzętu telemetrycznego. Był na tyle ciężki, że owady nie zachowywały się w nim naturalnie. Zmieniło się to dzięki bezprzewodowemu chipowi, zasilanemu nie przez baterie, ale bezprzewodowo.
      Urządzenie jest wspólnym dziełem Matta Reynoldsa z Duke University i Reida Harrisona z Intan Technologies. Powstało dla naukowców z Howard Hughes Medical Institute (HHMI), którzy zbierają informacje, przymocowując elektrody do pojedynczych neuronów łańcuszka nerwowego. Istotnym elementem ich pracy jest zapisywanie aktywności elektrycznej komórek nerwowych i mięśni.
      Wcześniejsze systemy nagrywania aktywności neuronalnej wymagały dużych baterii. Ważki nie mogły ich unieść, dlatego badano unieruchomione owady, które obserwowały obraz z projektora. Akademicy wiążą z nowym urządzeniem spore nadzieje, bo jeśli wszystko pójdzie po ich myśli, za jego pomocą będzie można badać nie tylko ważki, ale i inne małe zwierzęta. Wyeliminowanie baterii to szansa na "odchudzenie" aparatury i jej zminiaturyzowanie.
      Testy systemu prowadzono na specjalnej arenie. To tutaj umieszczano zasilający chip nadajnik. Ustalono, że chip przesyła dane w czasie rzeczywistym z prędkością do 5 megabitów na sekundę. Biolodzy zamierzają zestawiać dane pozyskiwane z neuronów z nagraniami szybkoklatkowymi ważek polujących na muszki owocowe. Szacują, że rozpoczną eksperymenty w ciągu najbliższych miesięcy. Chip z 2 antenkami ma być mocowany do spodniej części odwłoka, nie będzie więc przeszkadzać w poruszaniu skrzydłami.
      Średnia waga badanych ważek wynosi ok. 400 miligramów. Anthony Leonardo z HHMI ocenia, że bez szkody dla lotu i polowania owad jest w stanie unieść mniej więcej jedną trzecią swojej wagi, tymczasem dzisiejsze wielokanałowe systemy telemetryczne ważą 75-150 razy więcej niż ważka (bez baterii). Wcześniej Harrison i Leonardo opracowali co prawda zasilany baterią system specjalnie dla owadów, ale ponieważ ważył 130 miligramów, ważki musiały się wysilić, żeby go unieść. Na takim tle chip o wadze zaledwie 38 miligramów wydaje się lekki jak piórko. Co ważne, ma on 15 razy większą szerokość pasma niż urządzenie poprzedniej generacji.
    • By KopalniaWiedzy.pl
      Zwiększenie przyjmowanych dawek witamin z grupy B może zmniejszyć stres związany z pracą (Human Psychopharmacology).
      W ramach 3-miesięcznego eksperymentu naukowcy ze Swinburne University of Technology podawali połowie ochotników suplementy z wysoką dawką witamin B, a reszcie (grupie kontrolnej) placebo.
      Na początku studium Australijczycy zbadali wszystkich 60 ochotników za pomocą testów osobowościowych. Oceniano także wymogi dot. ich pracy, nastrój, poziom lęku i stresu. Badania powtórzono po 1 i 3 miesiącach.
      Na końcu 3-miesięcznego okresu osoby z zażywającej witaminy B grupy eksperymentalnej wspominały o o wiele niższym poziomie stresu związanego z pracą niż na początku. Doświadczały one niemal 20-proc. spadku natężenia odczuwanego stresu. W grupie kontrolnej nie zaszły żadne znaczące zmiany - opowiada prof. Con Stough.
      Czemu się tak stało? Witamina B, która znajduje się w nieprzetworzonym pokarmach, takich jak mięso, rośliny strączkowe czy pełne ziarna, jest integralną częścią syntezy neuroprzekaźników koniecznych dla psychologicznego dobrostanu [witamina B6 jest np. zaangażowana w produkcję dopaminy czy serotoniny].
      Mniej zestresowany pracownik jest zdrowszy i bardziej produktywny. Korzyści z jedzenia i zażywania suplementów z witaminami z grupy B odnoszą więc wszyscy. Stough przestrzega jednak przed huraoptymizmem. Wg niego, trzeba jeszcze określić wpływ suplementów z witaminą B na większej grupie. Najlepiej przez 2-3 lata.
    • By KopalniaWiedzy.pl
      W pełni dojrzałe komórki wątroby laboratoryjnych myszy można bezpośrednio przekształcić w działające neurony. Wystarczy za pomocą wirusa wprowadzić do hepatocytów 3 geny. Komórek nie trzeba nawet wcześniej przeprogramowywać, by uzyskać jako etap przejściowy indukowane komórki macierzyste (Cell Stem Cell).
      Przed 2 laty ta sama grupa naukowców ze Szkoły Medycznej Uniwersytetu Stanforda zademonstrowała, że da się przeprowadzić bezpośrednią transformację mysich fibroblastów (najliczniejszych komórek tkanki łącznej właściwej) do neuronów.
      Dr Marius Wernig podkreśla, że w przechodzących przemianę hepatocytach dochodzi jednocześnie do wyciszenia typowego dla wątroby profilu ekspresji genów. [Nowe komórki] nie są więc hybrydami; one całkowicie zmieniają swoją tożsamość.
      Do analizy profilu ekspresji genetycznej naukowcy wykorzystali metodę stworzoną przez doktora Stephena Quake'a (także z Uniwersytetu Stanforda). W ten sposób mogli wykazać, że przekształcane fibroblasty i hepatocyty nie tylko wyglądają i funkcjonują jak neurony, ale i całkowicie zastopowują ekspresję związaną z wcześniejszymi tożsamościami tkankowymi. Amerykanie bezsprzecznie potwierdzili, że nowe neurony rzeczywiście powstały z hepatocytów. Dodatkowo ustalili, że nawet w prawdziwych neuronach ma miejsce niewielka ekspresja genów wątroby; przypisano to szumowi transkrypcyjnemu, nazywanemu też szumem genomowym.
      Na razie nie wiadomo, na jakiej zasadzie zachodzi wyciszenie wcześniejszych profili ekspresji. Dopiero gdy uda się to ustalić, naukowcy będą mogli powiedzieć, czy komórki transróżnicowane, czyli przejmujące fenotyp innej zróżnicowanej komórki, wyjaśniają coś w kwestii różnych chorób i czy można je bezpiecznie stosować w terapii. Główny autor studium dr Samuele Marro i Werning tłumaczą, że przeważa nowy program genowy, lecz nadal można obserwować szczątkową "pamięć komórkową". Nie ma ona jednak znaczenia funkcjonalnego.
      Hepatocyty lepiej nadają się do przekształcania niż fibroblasty; są m.in. bardziej homogeniczną grupą komórek. To wielki sukces, że Amerykanom udało się przetransformować komórki pochodzenia endodermalnego (hepatocyty) w komórki ektodermalne (neurony).
      Badacze z Uniwersytetu Stanforda wprowadzili do hepatocytów dokładnie te same geny, co do fibroblastów: Brn2, Ascl1 i Myt1l. Jak fibroblasty, w ciągu 2 tygodni hepatocyty zaczęły przejawiać cechy neuronów, a w ciągu 3 tyg. dochodziło do ekspresji neuronalnych genów. W tym samym czasie doszło do stłumienia ekspresji genów wątrobospecyficznych.
    • By KopalniaWiedzy.pl
      Sztuczny móżdżek u szczurów to, wg futurystów, kolejny krok na drodze do stworzenia cyborgów, u których wzmocniono by działające prawidłowo funkcje. Dla biologów i lekarzy osiągnięcie Mattiego Mintza z Uniwersytetu w Tel Awiwie ma jednak nieco inne znaczenie: daje nadzieję na zastąpienie struktur uszkodzonych przez udar, wypadek czy procesy starzenia.
      Naukowcy podkreślają, że dotychczasowe protezy, np. implant ślimakowy, pozwalały na jednokierunkową komunikację – od urządzenia do mózgu albo na odwrót. W przypadku sztucznego móżdżku przepływ informacji zachodzi w obie strony.
      Urządzenie otrzymuje dane czuciowe z pnia mózgu. Interpretuje je, a następnie wysyła sygnał do różnych regionów pnia mózgu i znajdujących się tu obwodowych neuronów ruchowych (to do nich dostarczają część bodźców włókna związane z odruchami i programem ruchów).
      To dowód, że można nagrywać dane z mózgu, analizować je podobnie jak sieć biologiczna i kierować do mózgu informację zwrotną – cieszy się Mintz.
      Z kilku względów móżdżek doskonale nadawał się do zastąpienia sztucznym odpowiednikiem. Niemal doskonale znamy jego anatomię i niektóre z jego zachowań. Na początku akademicy analizowali sygnały napływające z pnia mózgu do sterującego równowagą, koordynacją i czasowaniem ruchów móżdżku. Później przyglądali się generowanej przez móżdżek odpowiedzi. Na końcu stworzyli sztuczną wersję móżdżku w postaci chipa, który znajduje się na zewnątrz czaszki i jest podłączony do mózgu za pomocą wszczepionych elektrod.
      W ramach testów znieczulono szczura i wyłączono jego móżdżek. Zwierzę poddano warunkowaniu klasycznemu. Najpierw miało ono mrugać w odpowiedzi na dmuchnięcie w oko połączone z dźwiękiem, potem po zadziałaniu samego dźwięku. W pierwszym scenariuszu naukę prowadzono bez podłączonego chipa (wtedy szczur nie był w stanie opanować odruchu). W drugim chip podłączano i gryzoń uczył się jak zwykłe zwierzę.
      Naukowcy komentujący doniesienia Izraelczyków podkreślają, że w przyszłości trzeba będzie stworzyć modele większych obszarów móżdżku, które mogłyby się uczyć całych sekwencji ruchowych. Wg nich, warto by też sprawdzić, jak sprawuje się chip u przytomnych zwierząt, a nie będzie to łatwe ze względu na artefakty w sygnale generowane przez sam ruch.
×
×
  • Create New...