Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Rekordowa dziura ozonowa

Rekomendowane odpowiedzi

Europejska Agencja Kosmiczna poinformowała, że jej satelita wykrył rekordowo niski poziom ozonu nad Antarktyką. W ciągu ostatnich 10 lat z ziemskiej atmosfery ubyło 0,3 procenta ozonu, co spowodowało wzrost ryzyka zachorowań na raka skóry, kataraktę i negatywnie wpłynęło na morskie ekosystemu.

Obecność dziury ozonowej nad Antarktyką zaobserwowano po raz pierwszy w 1985 roku. Powierzchnia tegorocznej dziury zbliża się do 29 milionów kilometrów kwadratowych – rekordu ustanowionego w 2000 roku. Jest od neij jednak głębsza. W całym 2000 roku atmosfera ziemska na tym obszarze utraciła 39 milionów ton ozonu. Do 2 października bieżącego roku strata wyniosła 40 milionów ton.

Zdaniem naukowców tak duża strata jest związana z wyjątkowo niskimi temperaturami. Tak zimno na Antarktyce nie było od 1979 roku.

Światowa Organizacja Meteorologiczna (WMO) i Program Środowiskowy Narodów Zjednoczonych (UNEP) przewidują, że warstwa ozonowa nad Europą, Ameryką Północną, Azją, Australią i Ocenia, Ameryką Południową i Afryką w 2049 roku powróci do swojego stanu sprzed lat 80. ubiegłego wieku. Antarktyka będzie musiała poczekać do roku 2065.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dalej niech samoloty latają w troposferze , chlorujmy wode, spalajmy węgiel a dziura w ciągu 5 lat będzie po równik , jedynym plusem będzie to ze do pracy będziemy chodzić nocą a wszystkie dniówki będą wolne ;D :-*

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Badacze z Polskiej Stacji Antarktycznej im. Henryka Arctowskiego znaleźli w Antarktyce zwłoki brytyjskiego naukowca, który zginął niemal równo 66 lat temu. W Zatoce Admiralicji na Wyspie Króla Jerzego cofający się lodowiec odsłonił ludzkie szczątki, a badania DNA potwierdziły, że to Dennis „Tink” Bell, 25-letni meteorolog, który pracował dla poprzedniczki British Antarctic Survey, Falkland Islands Dependencies Survey. Obok zwłok znajdowało się ponad 200 przedmiotów zmarłego, w tym pozostałości po walkie-talkie, latarka, kijki od nart, zegarek marki Erguel czy nóż szwedzkiej marki.
      Dennis Bell był najstarszy z trójki rodzeństwa. Po ukończeniu szkoły służył w Królewskich Siłach Powietrznych (RAF) jako radiooperator, a w 1958 roku został meteorologiem w FIDS. Otrzymał przydział do niewielkiej kilkuosobowej Stacji Zatoki Admiralicji (Admiralty Bay Station) na Wyspie Króla Jerzego. Koledzy zapamiętali go jako bardzo pogodnego człowieka.
      Dnia 26 lipca 1959 roku czterech pracowników bazy wyruszyło na badania terenowe. Bell i geodeta Jeff Stokes poszli pierwsi, pół godziny po nich ruszyła kolejna para. Bell i Stokes wspinali się na lodowiec w głębokim śniegu, na obszarze poprzecinanym szczelinami. Marsz był trudny, a ciągnące sanie psy zaczęły wykazywać oznaki zmęczenia. Bell, chcąc je zachęcić, poszedł przodem. Niestety, na nogach nie miał nart. Nagle zniknął, wpadł w szczelinę, której nie zauważył. Stokes zaczął go nawoływać i, ku swojej uldze, usłyszał odpowiedź. Opuścił aż 30 metrów liny, zanim Bell był w stanie jej dosięgnąć.
      Stokes przy pomocy psów zaczął wyciągać Bella. Meteorolog przywiązał jednak linę do paska od spodni, zamiast się nią obwiązać. Prawdopodobnie zrobił tak ze względu na kąt, pod jakim leżał w szczelinie. Gdy już dotarł do krawędzi szczeliny, zaklinował się, pasek pękł i Bell znowu spadł. Tym razem nie odpowiedział na wołania Stokesa.
      Geodeta oznaczył szczelinę, pobrał pomiary z pobliskich wzniesień i zaczął schodzić w dół lodowca. Po drodze spotkał drugi zespół – meteorologa Kena Gibsona i geologa Colina Bartona. Razem wrócili na górę. Pogoda zaczęła się pogarszać, zerwała się burza śnieżna. W tych warunkach nie mogli znaleźć ani oznaczeń Stokesa, ani wzniesień. Mimo olbrzymiego ryzyka wpadnięcia w szczelinę, mężczyźni kontynuowali poszukiwania miejsca wypadku. W końcu, po około 12 godzinach, znaleźli właściwą szczelinę. Doszli do wniosku, że ich kolega nie mógł tak długo przeżyć w takich warunkach.
      Ludzkie szczątki zostały zauważone przez Polaków 19 stycznia 2025 roku na Ecology Glacier. Nasi polarnicy oznaczyli miejsce i zebrali próbki. Po powrocie do Stacji Arctowskiego zapadła decyzja, że konieczne są dodatkowe badania archeologiczne. W wyprawie, która trwała od 9 do 13 lutego wzięli udział archeolodzy, geomorfolodzy, antropolodzy i glacjolodzy. Zebrane kości i przedmioty osobiste przewieziono na pokładzie statku Sir David Attenborough do stolicy Falklandów, Stanley. Następnie RAF przetransportował je do Londynu. Ich badaniami genetycznymi zajęła się profesor Denise Syndercombe Court z King's College London. Uczona właśnie potwierdziła zgodność genetyczną kości z rodzeństwem Dennisa, Davidem Bellem i Valerie Kelly. Prawdopodobieństwo, że kości nie należą do Dennisa Bella jest mniejsze niż jeden na miliard.
      Mieszkający obecnie w Australii David stwierdził: Gdy moja siostra Valerie i ja zostaliśmy poinformowani, że po 66 latach znaleziono naszego brata Dennisa, byliśmy w szoku. British Atrantic Survey i British Antarctic Monument Trust udzieliły nam ogromnego wsparcia, a dzięki wrażliwości polskiego zespołu mogliśmy sprowadzić do domu naszego wspaniałego brata, co pomogło nam uporać się z żałobą. David wspomina, że starszy od niego Dennis był jego bohaterem. Potrafił naprawiać silniki, fotografował i samodzielnie wywoływał zdjęcia, zbudował radio od podstaw i całymi godzinami korespondował zdalnie z innymi radioamatorami posługując się alfabetem Morse'a. Lubił wędrówki, teatr i jedzenie. Nie znosił za to zawodów sportowych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Barcelony i Corku opublikowali najbardziej szczegółową mapę podmorskich kanionów Antarktyki. Zawiera ona 332 kaniony, niektóre z nich o głębokości ponad 4000 metrów. Katalog, wspólne dzieło uczonych z Universitat de Barcelona i University College Cork, zawiera informacje o pięciokrotnie większej liczbie kanionów niż poprzednie podobne zestawy danych. A w towarzyszącym mu artykule na łamach Marine Geology uczeni wykazali, że kaniony mogą mieć większe niż przypuszczano znaczenie dla cyrkulacji wód oceanicznych, zmniejszania się pokrywy morskiego lodu oraz zmian klimatu.
      Kaniony odgrywają niezwykle istotną rolę w transporcie osadów i substancji odżywczych z wybrzeży do głębokich partii oceanów, łączą płytkie i głębokie obszary oceanów, tworzą bogate siedliska dla morskiego życia. Dotychczas na całym globie zidentyfikowano około 10 000 podmorskich kanionów, jednak prawdopodobnie jest ich znacznie więcej. Pomimo ich wielkiego wpływu na ekologię, geologię czy oceanografię, struktury te są słabo znane, szczególnie leżące w obszarach poarnych.
      Kaniony w Arktyce i Antarktyce są podobne do kanionów z innych obszarów planety, ale zwykle są większe i głębsze z powodu długotrwałego oddziaływania lodu oraz olbrzymich ilości osadów transportowanych przez lodowce z szelfu kontynentalnego, mówi David Amblàs. Ponadto antarktyczne kaniony tworzą się głównie w wyniku działalności prądów zawiesinowych, gdzie gęstsza od otoczenia zawiesina gwałtownie spływa w dół pod wpływem grawitacji. Te silne prądy, zasilane w osady przez lodowce, rzeźbią w dnie wielkie kaniony.
      Zdaniem naukowców, najbardziej interesującym aspektem ich badań jest odnotowanie różnic pomiędzy kanionami powstającymi w dwóch ważnych regionach Antarktyki. W Antarktyce Wschodniej kaniony są bardziej rozbudowane, rozgałęzione, tworząc wielkie systemy o przekroju w kształcie litery U. To sugeruje, że powstały w wyniku długotrwałego oddziaływania lodowców i wielkiego wpływu procesów erozji i sedymentacji. Z kolei w Antarktyce Zachodniej kaniony są krótsze, mają bardziej strome brzegi, a ich przekrój przypomina literę V. Spostrzeżenie to jest wsparciem dla hipotezy, że lądolód Arktyki Wschodniej – największy lądolód na Ziemi – powstał wcześniej. Dotychczas hipoteza ta miała wsparcie w badaniu osadów, teraz kolejnym dowodem jest geomorfologia dna morskiego.
      Antarktyczne kaniony ułatwiają wymianę wody między szelfem kontynentalnym, a głębokimi partiami oceanu. Dzięki nim zimne gęste wody z okolic lądolodu spływają w dół i tworzą AABW (Antarctic Bottom Water), masę wody odgrywającą ważną rolę w światowej cyrkulacji oceanicznej. Ponadto kaniony kierują ciepłe wody, takie jak CDW (Circumpolar Deep Water) z Pacyfiku i Oceanu Indyjskiego w kierunku szelfu Antarktyki, podgrzewając lód i prowadząc do jego topnienia.
      Autorzy badań zauważają, że obecne modele cyrkulacji oceanicznej niedokładnie odtwarzają lokalne procesy fizyczne zachodzące między masami wody a kanionami, przez co mają ograniczoną możliwość przewidywania zmian zachodzących w oceanach i atmosferze.
      Źródło: The geomorphometry of Antarctic submarine canyons

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Utrata lodu morskiego w Antarktyce prowadzi do większego wydzielania ciepła z oceanu do atmosfery oraz do zwiększonej liczby burz, donoszą naukowcy z British Antarctic Survey. Autorzy badań, którymi kierowali uczeni z brytyjskiego Narodowego Centrum Oceanografii (NOC), skupili się na zbadaniu skutków rekordowo małego zasięgu lodu pływającego w Antarktyce zimą 2023 roku.
      Badania warstwy atmosfery znajdującej się bezpośrednio nad powierzchnią oceanu pokazały, że po utracie lodu ocean oddaje do atmosfery dwukrotnie więcej ciepła niż wcześniej. Ma to znaczenie dla obu stron miejsca styku wód oceanicznych z atmosferą. Z jednej strony w atmosferze, szczególnie na wyższych szerokościach geograficznych Oceanu Południowego, pojawia się więcej burz – w niektórych miejscach jest ich nawet o 7 więcej w miesiącu – z drugiej zaś strony chłodniejsze wody powierzchniowe oceanu stają się gęstsze niż wcześniej. Autorzy badań ostrzegają, że może mieć to nieznane obecnie konsekwencje dla głębokich prądów oceanicznych. Gęste wody z powierzchni mogą się zanurzać i zaburzać te prądy.
      Miejsca, w których pojawiają się te nowe gęste wody powierzchniowe znajdują się dość daleko od tych miejsc szelfu w Antarktyce, gdzie tworzą są najgęstsze i najgłębsze prądy oceaniczne. Jednak ochładzanie się i spowodowane tym zanurzanie wód z regionów wcześniej pokrytych przez lód może doprowadzić do wynurzenia się ciepłych wód, które były dotychczas utrzymywane z dala od lodu i spowodować w przyszłości przyspieszone topnienie lodu. Pilnie potrzebujemy nowych analiz tego zjawiska i sprzężenia zwrotnego, by zrozumieć, jak masowa utrata lodu w 2023 roku i w roku bieżącym, wpłyną na cyrkulację wody w Oceanie Południowym. To kluczowe zagadnienie do zrozumienia mechanizmu pochłaniania ciepła i węgla przez ocean oraz roztapiania lodów Antarktyki, mówi współautor badań, doktor Andrew Meijers.
      Profesor Simon Josey z NOC dodaje, że jest jeszcze zbyt wcześnie, by przesądzać, czy rok 2023 i jego rekordowo niski poziom lodu morskiego oznacza fundamentalną zmianę w ilości antarktycznego lodu morskiego. Jednak nasze badania pokazują, że jeśli w przyszłości dojdzie do równie silnych zmian, to należy spodziewać się ekstremalnych zjawisk.
      Powinniśmy więcej uwagi przywiązywać do badań związku pomiędzy utratą lodu pływającego na Antarktyce, utratą ciepła przez oceany i zmianami pogodowymi. Skutki tych zjawisk mogą być bowiem odczuwane daleko poza Antarktyką.
      Autorzy badań obawiają się, że jeśli do tak dużej utraty lodu będzie dochodziło w kolejnych latach, zmiany będą coraz bardziej dramatyczne i może to przyspieszyć utratę lodu w Antarktyce.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W ciągu najbliższych trzech dekad głębinowa cyrkulacja antarktyczna może spowolnić o ponad 40%, stwierdzają naukowcy z Uniwersytetu Nowej Południowej Walii. Taka zmiana będzie niosła ze sobą poważne konsekwencje dla oceanów i klimatu.
      Zimna woda, która zanurza się pod powierzchnię oceanu w pobliżu Antarktyki napędza najgłębszą cyrkulację oceaniczną. Rozprowadza ona ciepło, węgiel, tlen i składniki odżywcze po całym światowym oceanie. Ma to wpływ na klimat, poziom mórz oraz produktywność ekosystemów morskich.
      Nasz model pokazuje, że jeśli emisja węgla będzie odbywała się na tym samym poziomie, co obecnie, to w ciągu 30 lat cyrkulacja głębinowa zwolni o ponad 40% i wszystko będzie zmierzało do załamania, mówi główny autor badań, profesor Matthew England.
      Każdego roku około 250 bilionów ton zimnej, słonej, bogatej w tlen wody zanurza się głęboko w ocean w pobliżu Antarktydy. Woda ta płynie następnie na północ, dostarczając tlen i składniki odżywcze do Oceanów Indyjskiego, Spokojnego i Atlantyckiego. Jeśli oceany miałyby płuca, to byłoby jedno z nich, wyjaśnia England. Ta głęboka cyrkulacja antarktyczna była relatywnie stabilna przez ostatnie setki tysięcy lat. Jednak modele klimatyczne wskazują, że wraz z emisją dwutlenku węgla, będzie ona słabła.
      Gdy tak się stanie, wody oceaniczne położone na głębokości ponad 4000 metrów czeka stagnacja. Substancje odżywcze zostaną uwięzione w głębinach oceanicznych, a to zmniejszy ich ilość dostępną w płytszych warstwach oceanu, wyjaśnia England. Wykorzystany model pokazuje, że spowolnienie cyrkulacji spowoduje szybkie ogrzewanie się głębokich wód oceanicznych. Bezpośrednie pomiary potwierdzają, że już obecnie mamy do czynienia z ogrzewaniem się głębokich partii oceanu, przypomina współautor badań, doktor Steve Rintoul.
      Autorzy badań zauważyli, że topienie się lodów wokół Antarktyki powoduje, że wody oceaniczne są mniej gęste, co spowalnia ich cyrkulację. A wszystko wskazuje na to, że na obu biegunach będzie ubywało lodu. Nasze badania pokazują, że roztapianie się lodów ma olbrzymi wpływ na cyrkulację zwrotną, która reguluje klimat na Ziemi, dodaje doktor Adele Morrison. Mówimy o potencjalnym długoterminowym zniknięciu niezwykle ważnego mechanizmu. Tak głębokie zmiany w przepływie ciepła, tlenu, węgla i składników odżywczych będą miały głęboki, negatywny, trwający wiele wieków wpływ na oceany, dodaje England.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dziura ozonowa nad Antarktyką ciągle się zmniejsza, informują naukowcy z NOAA i NASA. Pomiędzy 7 września a 13 października bieżącego roku jej średnia wielkość wynosiła 23,2 miliona kilometrów kwadratowych. Dziura była więc nieco mniejsza niż w ubiegłym roku i utrzymany został generalny trend spadkowy jej powierzchni.
      Z czasem dziura się kurczy. Obserwujemy dzienne i tygodniowe wahania spowodowane zmianami pogodowymi i innymi czynnikami. Jednak przez ostatnie dwie dekady mamy do czynienia z trendem spadkowym. To dzięki Protokołowi Montrealskiemu, w ramach którego ludzkość przestała emitować substancje niszczące warstwę ozonową, mówi Paul Newman, główny naukowiec ds. nauk o Ziemi w Goddard Space Flight Center.
      Znajdująca się w stratosferze warstwa ozonowa chroni Ziemię przed szkodliwym promieniowaniem ultrafioletowym. Od dziesięcioleci nad Biegunem Południowym formuje się dziura ozonowa. Chemiczne aktywne formy chloru i bromu, których obecność w atmosferze wiąże się z działalnością człowieka, inicjują niszczenie warstwy ozonowej, gdy pod koniec antarktycznej zimy nad Biegunem znowu wschodzi Słońce.
      NASA i NOAA wykorzystują satelity Aura, Suomi NPP i NOAA-20 do obserwacji tworzenia się i znikania dziury ozonowej. Przed dwoma tygodniami, 5 października, dziura osiągnęła maksymalną wielkość 26,4 miliona kilometrów kwadratowych. To nieco więcej niż ubiegłoroczne maksimum (24,8 miliona km2).
      NOAA wykonuje też pomiary ozonu za pomocą spektrometru Dobsona. Instrument ten mierzy całą kolumnę ozonu od powierzchni Ziemi po granice przestrzeni kosmicznej. Jej średnia grubość wynosi 300 jednostek, co odpowiada warstwie 3 mm. W miejscu występowania dziury ozonowej wartość ta jest znacznie mniejsza. W bieżącym roku najmniejsza jej wartość wyniosła 102 jednostki. Było to w czasie, gdy pomiędzy 14. a 21. kilometrem ozonu niemal w ogóle nie było. W ubiegłym roku najniższa zmierzona wartość wynosiła 101 jednostek.
      Szkodliwe dla ozonu substancje utrzymują się w atmosferze przez 50–100 lat, dlatego też do wyraźnego zmniejszenia się dziury ozonowej musimy poczekać do lat 2060–2080. Protokół montrealski, w którym zakazano stosowania niektórych substancji zubożających warstwę ozonową, podpisano w 1987 roku, wszedł on w życie z początkiem 1989 roku. Był stopniowo wzmacniany, w kolejnych latach zakazywano kolejnych substancji. Do roku 1999 protokołem objęto 95 substancji, a ich emisja spadła w tym czasie z 1,1 miliona ton w roku 1985 do mniej niż 150 000 ton.
      Najświeższe dane na temat dziury ozonowej możemy śledzić na stronie NASA Ozone Watch.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...