Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Co łączy proces produkcji układów scalonych z opracowywanymi przez NASA silnikami jonowymi? I chipy, i silniki jonowe mogą zostać udoskonalone dzięki najnowszemu osiągnięciu uczonych z Lawrence Berkeley National Laboratory (LBNL). Opracowali oni lepszą metodę napylania jonowego.

W przemyśle półprzewodnikowym metalowe warstwy są nanoszone na podłoże krzemowe właśnie za pomocą napylania jonowego. Technika ta polega na wykorzystaniu plazmy, uzyskiwanej najczęściej z argonu, którą umieszcza się za pomocą pola magnetycznego pomiędzy warstwą metalu a produkowanym obwodem. Plazma wybija jony z metalu, a te przepływają do obwodu, gdzie są osadzane. Obecnie najczęściej wykorzystywaną techniką napylania jonowego jest opracowane w latach 90. impulsowe magnetronowe napylanie wysokosprawne (HIPIMS - High Power Impulse Magnetron Sputtering), która znacznie zwiększyło liczbę jonów metali osadzających się na podłożu, co z kolei polepsza jakość pokrycia. Jednak nawet w HIPIMS prąd wyładowczy ma ponaddziesięciokrotnie wyższe natężenie, niż jony docierające do krzemowego podłoża. Specjaliści z LBNL wykorzystali HIPIMS i odwrócili sytuację: wbrew intuicji natężenie jonów w pewnych warunkach znacznie przewyższa natężenie prądu wyładowczego.


Oczywiście większą liczbę jonów można by teoretycznie uzyskać za pomocą obecnych technik. Wystarczy tylko zwiększyć moc dostarczanego prądu. Jednak przy zwiększeniu mocy istnieje ryzyko przegrzania systemu do tego stopnia, iż magnesy się rozmagnetyzują lub dojdzie do stopienia krzemowego podłoża. Zarówno magnesy jak i katoda muszą być chłodzone wodą. W zastosowaniach przemysłowych używa się rozpylacza o średniej mocy około 1 kilowata - mówi Anders. Właśnie ta "średnia" jest tutaj bardzo ważna. Gdy bowiem dostarcza się prądu w krótkich impulsach, mogą one przekraczać średnią o setki razy, dzięki czemu uzyskujemy znacznie więcej jonów i wolnych elektronów, a więc znacznie lepsze pokrycie. Liczba jonów wytworzonych w takich warunkach jest dostatecznie duża do tworzenia pokrycia, jak i wystarczająca do powrotu do celu i pozyskania kolejnych jonów. System sam się podtrzymuje, gdyż w plazmie dominują jony metalu, a nie gaz, a w płaszczu mamy dodatkowe nadmiarowe elektrony tworzące nadmiarową plazmę. System po chwili samodzielnie się stabilizuje, ale już na wyższym poziomie, niż poprzednio.

W tradycyjnych metodach napylania gaz potrzebny do uzyskania plazmy powoduje, że pokrycia nie są jednorodne, a mogą nawet przypominać gąbkę. Jednak w nowej technologii w plazmie już nie dominuje gaz, a więc w pokryciu nie powstają luki. Ponadto wysoka koncentracja jonów pozwala na nałożenie ich nawet w najtrudniej dostępnych miejscach. To z kolei umożliwia tworzenie doskonalszych układów scalonych. Ponadto, jako że nowa technologia dobrze sprawdza się w próżni, może zostać w przyszłości wykorzystania zarówno do napylania materiałów w przestrzeni kosmicznej, jak i do stworzenia jonowego silnika, którego paliwem będzie tani niepalny metal. Inne potencjalne egzotyczne zastosowanie nowej technologii to użycie jej do pokrywania wnętrz akceleratorów cząstek niobem, materiałem, z którym bardzo trudno jest obecnie pracować.
Podczas dotychczasowych eksperymentów Anders i Joakim Andersson wykorzystali prąd o natężeniu 250 amperów, a więc o wartości znacznie większej, niż kiedykolwiek stosowana w magnetronach.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Gdy bowiem dostarcza się prądu w krótkich impulsach, mogą one przekraczać średnią o setki razy, dzięki czemu uzyskujemy znacznie więcej jonów i wolnych elektronów (...)

 

A czy przypadkiem te "wolne elektrony" to nie jest inna nazwa na jony (aniony)? Redundancja jakaś zakręcona chyba, albo to ja powinienem jeść wcześniej kolację...

 

Ponadto spacja się zgubiła i powstał wyraz "ponaddziesięciokrotnie" ;-)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wyraz jest napisany jak najbardziej poprawnie, choć obie formy są dozwolone i prawdopodobnie stąd bierze się nieporozumienie :) Warto zajrzeć: http://poradnia.pwn.pl/lista.php?id=653

 

Natomiast co do elektronów: jak najbardziej nawet pojedyncze z nich mogą zostać uwolnione z atomu. Oczywiście część z nich będzie zaraz przechwycona i wejdzie w skład anionów, ale można mówić o stanie równowagi, w którym część elektronów jest obecnych w stanie wolnym.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      IBM pokaże dzisiaj prototypowy optyczny układ scalony „Holey Optochip“. To pierwszy równoległy optyczny nadajnik-odbiornik pracujący z prędkością terabita na sekundę. Urządzenie działa zatem ośmiokrotnie szybciej niż inne tego typu kości. Układ pozwala na tak szybki transfer danych, że mógłby obsłużyć jednocześnie 100 000 typowych użytkowników internetu. Za jego pomocą można by w ciągu około godziny przesłać zawartość Biblioteki Kongresu USA, największej biblioteki świata.
      Holey Optochip powstał dzięki wywierceniu 48 otworów w standardowym układzie CMOS. Dało to dostęp do 24 optycznych nadajników i 24 optycznych odbiorników. Przy tworzeniu kości zwrócono też uwagę na pobór mocy. Jest on jednym z najbardziej energooszczędnych układów pod względem ilości energii potrzebnej do przesłania jednego bita informacji. Holey Optochip potrzebuje do pracy zaledwie 5 watów.
      Cały układ mierzy zaledwie 5,2x5,8 mm. Odbiornikami sygnału są fotodiody, a nadajnikami standardowe lasery półprzewodnikowe VCSEL pracujące emitujące światło o długości fali 850 nm.
    • przez KopalniaWiedzy.pl
      Naukowcy ze SLAC National Accelerator Laboratory wykorzystali najpotężniejszy na świecie laser działający w zakresie promieniowania rentgenowskiego stworzenia i zbadania próbki materii o temperaturze 2 milionów stopni Celsjusza. Eksperymenty tego typu pozwalają na zbadanie materii występującej wewnątrz gwiazd i olbrzymich planet. Mogą tez przydać się podczas badań nad procesem fuzji jądrowej.
      Laser Linac Coherent Light Source (LCLS) generuje impulsy promieni X, które są miliard razy jaśniejsze niż promieniowanie z jakiegokolwiek innego znanego nam źródła. Za pomocą takich impulsów rozgrzano kawałek folii aluminiowej, tworząc gorącą gęstą materię o temperaturze około 2 milionów stopni Celsjusza. Cały proces tworzenie plazmy trwał biliardowe części sekundy.
      Naukowcy od dawna potrafili uzyskiwać plazmę z gazów i badać ją za pomocą laserów. Dotychczas jednak nie istniało urządzenie, które byłoby w stanie tworzyć plazmę z ciała stałego. LCLS, dzięki wykorzystaniu ultrakrótkich fali X jest pierwszym, który potrafi penetrować gęste ciała stałe, tworzyć plazmę i jednocześnie ją badać - powiedział Bob Nagler, współautor badań.
    • przez KopalniaWiedzy.pl
      Inżynierowie z Brown University zaprojektowali urządzenie, które pozwala mierzyć poziom glukozy w ślinie, a nie krwi. W artykule opublikowanym na łamach Nano Letter Amerykanie ujawnili, że w biochipie wykorzystano interferometry plazmoniczne.
      Zaprezentowane rozwiązanie powstało "na styku" dwóch dziedzin: nanotechnologii i plazmoniki, czyli nauki o własnościach i zastosowaniach powierzchniowych fal plazmonowo-polarytonowych. Na biochipie wielkości paznokcia specjaliści z Brown University wytrawili tysiące interferometrów plazmonicznych. Potem mierzyli stężenie glukozy w roztworze przepływającym po urządzeniu. Okazało się, że odpowiednio zaprojektowany biochip wykrywa stężenia glukozy występujące w ludzkiej ślinie. Zazwyczaj poziom cukru w ślinie jest ok. 100-krotnie niższy niż we krwi.
      W ten sposób zweryfikowaliśmy koncepcję, że [bazujące na interakcjach elektronów i fotonów] interferometry plazmoniczne można wykorzystać do wykrywania niewielkich stężeń cząsteczek - podkreśla prof. Domenico Pacifici, dodając, że równie dobrze jak glukoza, mogą to być inne substancje, np. zanieczyszczenia środowiskowe czy wąglik. W dodatku da się je wykrywać wszystkie naraz na tym samym chipie.
      Konstruując czujnik, naukowcy zrobili nacięcie o szerokości ok. 100 nanometrów. Potem z obu jego stron wycięli rowki o grubości 200 nanometrów. Wycięcie wychwytuje zbliżające się fotony, a rowki je rozpraszają, przez co dochodzi do interakcji z wolnymi elektronami, odbijającymi się od metalowej powierzchni chipa. Interakcje wolne elektrony-fotony prowadzą do powstania plazmonów powierzchniowych - tworzy się fala o długości mniejszej od fotonu w wolnej przestrzeni (free space). Dwie fale przemieszczają się wzdłuż powierzchni chipa, aż napotkają fotony w nacięciu. Zachodzi interferencja, a obecność mierzonej substancji (tutaj glukozy) na czujniku prowadzi do zmiany względnej różnicy faz, co z kolei powoduje mierzone w czasie rzeczywistym zmiany w intensywności światła transmitowanego przez środkowe wycięcie. Środkowe nacięcie działa jak mikser [...] dla fal plazmonów powierzchniowych i światła.
      Akademicy nauczyli się, że mogą manipulować przesunięciem fazy, zmieniając odległości między wycięciem a rowkami po bokach. W ten sposób można wykalibrować interferometr wykrywający bardzo niskie stężenia glukozy rzędu 0,36 mg na decylitr.
    • przez KopalniaWiedzy.pl
      Według niepotwierdzonych informacji Microsoft zlecił IBM-owi i Globalfoundries produkcję układów scalonych dla następcy Xboksa 360. Podobno koncern z Redmond zamówił wykonanie około dziesięciu tysięcy 300-milimetrowych plastrów krzemowych z układami o nazwie kodowej Oban. Kości mają trafić do twórców oprogramowania, którzy będą pisali gry na konsolę.
      Podobno Oban zawiera procesor PowerPC i rdzeń graficzny Radeon HD bazujący na architekturze GCN (graphics core next).
      Wcześniejsze pogłoski mówiły, że Xbox Next będzie korzystał z układu system-on-chip opartego na architekturze ARM zawierającego wiele dedykowanych rdzeni odpowiedzialnych za grafikę, sztuczną inteligencję, dźwięk, szyfrowanie i inne funkcje. Przyszła konsola Microsoft ma podobno wykorzystywać system operacyjny zbudowany wokół jądra Windows 9. Ma być ona też mniejsza i tańsza w produkcji niż Xbox 360.
      Żadna z wymienionych firm nie chciała skomentować tych doniesień.
    • przez KopalniaWiedzy.pl
      Współpraca naukowców z University of New South Wales, Melbourne University i Purdu University zaowocowała stworzeniem najmniejszego połączenia elektrycznego umieszczonego na krzemie. Ma ono grubość 1 atomu i szerokość 4 atomów. Mimo tak niewielkich rozmiarów transport elektronów odbywa się równie wydajnie co za pomocą tradycyjnego połączenia miedzianego.
      Osiągnięcie to ma olbrzymie znacznie na wielu polach rozwoju elektroniki i inżynierii. Pozwoli w przyszłości na dalsze zmniejszanie rozmiaru układów scalonych. Ponadto daje nadzieję na wykorzystanie w komputerach kwantowych techniki precyzyjnego wzbogacania krzemu pojedynczymi atomami.
      Prace australijsko-amerykańskiego zespołu wykazały też, że prawo Ohma ma zastosowanie w skali atomowej. To niesamowite, że Prawo Ohma, prawo tak podstawowe, zostaje zachowane przy budowaniu połączeń elektrycznych z pojedynczych cegiełek natury - stwierdził Bent Weber, jeden z twórców miniaturowych kabli. Badacze podkreślają, że połączenia były tworzone atom po atomie, co znacząco różni się od technik stosowanych we współczesnej elektronice. Obecnie usuwa się nadmiarowy materiał, a to technika trudna, kosztowna i nieprecyzyjna. Gdy schodzi się do wielkości poniżej 20 atomów, mamy do czynienia z takimi różnicami w liczbie atomów, że dalsze skalowanie jest trudne. Ale podczas tego eksperymentu stworzono urządzenie dzięki umieszczaniu pojedynczych atomów fosforu na krzemie i okazało się, że gęsto ułożony przewód o szerokości zaledwie 4 atomów działa tak, jak przewody metalowe - powiedział profesor Gerhard Klimeck z Purdue.
      Jak poinformowała profesor Michelle Simmons z University of New South Wales, która kierowała badaniami, głównym celem badań jest rozwój przyszłych komputerów kwantowych, w których pojedyncze atomy są wykorzystywane do przeprowadzania obliczeń.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...