Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Ciepło bazodanowe

Recommended Posts

Z ubiegłorocznego raportu amerykańskiej Agencji Ochrony Środowiska (EPA) dowiadujemy się, że w samych tylko Stanach Zjednoczonych centra bazodanowe zużywają 61 miliardów kilowatogodzin energii. To ilość wystarczająca do zasilenia przez rok 5,8 milionów (czyli ponad 5%) amerykańskich gospodarstw domowych.

Energia elektryczna zużywana przez centra bazodanowe kosztuje ich właścicieli 4,5 miliarda dolarów rocznie. Eksperci z EPA przewidują, że do roku 2011 ilość energii potrzebnej centrom bazodanowym wzrośnie do ponad 100 miliardów kilowatogodzin, co będzie kosztowało ich właścicieli około 7,4 miliarda USD.

Nic więc dziwnego, że nawet taki gigant jak IBM szuka możliwości zaoszczędzenia pieniędzy.
Inżynierowie z IBM-owskiego Zurich Research Laboratory uważają, że koszty zużycia energii przez centra bazodanowe można obniżyć o 50%. Chcą tego dokonać dzięki chłodzeniu komputerów wodą i używaniu jej do ogrzewania pobliskich domów. Podczas konferencji SCO08 zaprezentowali prototypowy system, który ma trafić na rynek w ciągu pięciu najbliższych lat.

Bruno Michel, jeden z menedżerów wspomnianego laboratorium, poinformował o stworzeniu centrum bazodanowego, które odzyskuje 85% ciepła emitowanego przez komputery, a jednocześnie zużywa o połowę mniej energii niż analogiczne centra. Komputery w prototypowym centrum chłodzone są wodą płynącą w mikrokanalikach znajdujących się wewnątrz maszyn. Ogrzana w ten sposób woda jest pompowana do sieci ciepłowniczej i ogrzewa pobliskie domy.

Michel informuje, że centrum bazodanowe potrzebujące do pracy 10 megawatów energii jest w stanie ogrzać nawet 700 domów. Największym wyzwaniem, jak przyznał naukowiec, było ustalenie optymalnej temperatury wody. Musiała ona być wystarczająco niska, by ochłodzić komputery, a jednocześnie na tyle ciepła, by ogrzać domy. Najlepszym wyjściem okazało się chłodzenia komputerów... ciepłą wodą. Do wnętrza maszyn trafia woda o temperaturze 35 stopni Celsjusza. Na wyjściu jej temperatura wynosi już 60 stopni.

Profesor Randy Katz z Uniwersytetu Kalifornijskiego w Berkeley zauważa, że podczas chłodzenia centrum bazodanowego powietrzem mamy do czynienia z przechładzaniem pomieszczeń. Chcemy bowiem, by najgorętsze części komputera były dobrze chłodzone, chłodzimy więc wszystko. System chłodzenia wodnego doprowadza wodę bezpośrednio do miejsc, które trzeba schłodzić, nie marnujemy więc energii na niepotrzebne chłodzenie innych części i całego pomieszczenia.

Oczywiście centra bazodanowe były już wcześniej chłodzone wodą. Jednak była ona w nich ogrzewana jedynie do temperatury 45 stopni Celsjusza, czyli zbyt niskiej, by ogrzać domy. Co prawda komputery, z których ciepło było odbierane przez chłodniejszą wodę pracowały od 5 do 7 procent bardziej wydajnie, jednak całe ciepło było marnotrawione, więc bilans ekonomiczny nie był korzystny.

Bruno Michel przyznaje, że koszty budowy centrum bazodanowego chłodzonego wodą są o 10% wyższe, niż chłodzonego powietrzem. Jeśli natomiast spróbujemy przystosować już istniejące centra do chłodzenia wodą, koszty będą wyższe o 30%. Jednak korzyści związane z odzyskiwaniem i sprzedażą energii gwarantują, że wyższa początkowa cena zwróci się w ciągu 1-3 lat.

Profesor Katz zauważa, co prawda, że chłodzenie powietrzem jest coraz bardziej udoskonalane, jednak przyznaje, że istnieje potrzeba opracowania alternatywnego sposobu odbierania ciepła z centrów bazodanowych. Wraz z postępem miniaturyzacji we wnętrzach komputerów umieszczanych jest coraz więcej podzespołów, konieczne jest więc coraz bardziej efektywne chłodzenie.

Share this post


Link to post
Share on other sites

Już niedługo zamiast kotłowni w blokach będzie się budowało centrum bazodanowe. Zamiast kotłów CO będziemy budować minicentra :D Pomysł fajny, ciekawe ile będzie udanych wdrożeń. Lepiej by było generować z tego ciepła prąd - łatwiej by go było później upłynnić. Chociażby do oświetlania tych pobliskich domów. Wodę troszkę trudniej transportować.

Share this post


Link to post
Share on other sites
Już niedługo zamiast kotłowni w blokach będzie się budowało centrum bazodanowe. Zamiast kotłów CO będziemy budować minicentra

 

To nawet mogłoby się sprawdzić, gdyby ciepłem odpadowym podgrzewać wodę do kąpieli.

Share this post


Link to post
Share on other sites

Mnie jest szkoda nawet marnowanego ciepła wytwarzanego przez domowe komputery. Zwykle stawiam szklankę z herbatą/kawą obok wylotu chłodzenia w laptopie (z lewej strony, więc poręcznie), żeby dłużej była ciepła. Synchronizuję też picie z np. pracą antywirusa, jak się da. :D

 

P.S. To mój pierwszy raz tutaj (choć KP czytam od dawna), więc witam wszystkich.

Share this post


Link to post
Share on other sites

Spokojnie, zimą to ciepło z wentylatora dogrzewa Twój pokój :D Chociaż pomysł z podgrzewaniem napojów, choć jest dość ryzykowny z uwagi na bliskość kompa, sam stosuję :P

 

P.S. Witaj na forum :)

Share this post


Link to post
Share on other sites

Gdyby mi laptop dmuchał z prawej strony, to by mi chociaż zmarzniętą rękę na myszy grzał. :D Dogrzewanie pokoju akurat ma małe znaczenie: ponieważ mieszkam w starym bloku, kaloryfery są odkręcone na full i nie da się tego zmienić, więc za to okna są nieszczelne, żeby nie było za gorąco. :) Niezbyt to ekologiczne, ale póki PGKiM nie ruszy tyłka z wymianą infrastruktury, nic się nie zmieni.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Jednym ze sposobów na pozyskiwanie odnawialnej energii jest wykorzystanie różnicy chemicznych pomiędzy słodką i słoną wodą. Jeśli naukowcom uda się opracować metodę skalowania stworzonej przez siebie technologii, będą mogli dostarczyć olbrzymią ilość energii milionom ludzi mieszkających w okolica ujścia rzek do mórz i oceanów.
      Każdego roku rzeki na całym świecie zrzucają do oceanów około 37 000 km3 wody. Teoretycznie można tutaj pozyskać 2,6 terawata, czyli mniej więcej tyle, ile wynosi produkcja 2000 elektrowni atomowych.
      Istnieje kilka metod generowania energii z różnicy pomiędzy słodką a słoną wodą. Wszystkie one korzystają z faktu, że sole złożone są z jonów. W ciałach stałych ładunki dodatnie i ujemne przyciągają się i łączą. Na przykład sól stołowa złożona jest z dodatnio naładowanych jonów sodu połączonych z ujemnie naładowanymi jonami chloru. W wodzie jony takie mogą się od siebie odłączać i poruszać niezależnie.
      Jeśli po dwóch stronach półprzepuszczalnej membrany umieścimy wodę z dodatnio i ujemnie naładowanymi jonami, elektrony będą przemieszczały się od części ujemnie naładowanej do części ze znakiem dodatnim. Uzyskamy w ten sposób prąd.
      W 2013 roku francuscy naukowcy wykorzystali ceramiczną błonę z azotku krzemu, w którym nawiercili otwór, a w jego wnętrzu umieścili nanorurkę borowo-azotkową (BNNT). Nanorurki te mają silny ujemny ładunek, dlatego też Francuzi sądzili, że ujemnie naładowane jony nie przenikną przez otwór. Mieli rację. Gdy po obu stronach błony umieszczono słoną i słodką wodę, przez otwór przemieszczały się niemal wyłącznie jony dodatnie.
      Nierównowaga ładunków po obu stronach membrany była tak duża, że naukowcy obliczyli, iż jeden metr kwadratowy membrany, zawierający miliony otworów na cm2 wygeneruje 30 MWh/rok. To wystarczy, by zasilić nawet 12 polskich gospodarstw domowych.
      Problem jednak w tym, że wówczas stworzenie nawet niewielkiej membrany tego typu było niemożliwe. Nikt bowiem nie wiedział, w jaki sposób ułożyć długie nanorurki borowo-azotkowe prostopadle do membrany.
      Przed kilkoma dniami, podczas spotkania Materials Research Society wystąpił Semih Cetindag, doktorant w laboratorium Jerry'ego Wei-Jena na Rutgers University i poinformował, że jego zespołowi udało się opracować odpowiednią technologię. Nanorurki można kupić na rynku. Następnie naukowcy dodają je do polimerowego prekursora, który jest nanoszony na membranę o grubości 6,5 mikrometrów. Naukowcy chcieli wykorzystać pole magnetyczne do odpowiedniego ustawienia nanorurek, jednak BNNT nie mają właściwości magnetycznych.
      Cetindag i jego zespół pokryli więc ujemnie naładowane nanorurki powłoką o ładunku dodatnim. Wykorzystane w tym celu molekuły są zbyt duże, by zmieścić się wewnątrz nanorurek, zatem BNNT pozostają otwarte. Następnie do całości dodano ujemnie naładowane cząstki tlenku żelaza, które przyczepiły się do pokrycia nanorurek. Gdy w obecności tak przygotowanych BNNT włączono pole magnetyczne, można było manewrować nanorurkami znajdującymi się w polimerowym prekursorze nałożonym na membranę.  Później za pomocą światła UV polimer został utwardzony. Na koniec za pomocą strumienia plazmy zdjęto z obu stron membrany cienką warstwę, by upewnić się, że nanorurki są z obu końców otwarte. W ten sposób uzyskano membranę z 10 milionami BNNT na każdy centymetr kwadratowy.
      Gdy taką membranę umieszczono następnie pomiędzy słoną a słodką wodą, uzyskano 8000 razy więcej mocy na daną powierzchnię niż podczas eksperymentów prowadzonych przez Francuzów. Shan mówi, że tak wielki przyrost mocy może wynikać z faktu, że jego zespół wykorzystał węższe nanorurki, zatem mogły one lepiej segregować ujemnie naładowane jony.
      Co więcej, uczeni sądzą, że membrana może działać jeszcze lepiej. Nie wykorzystaliśmy jej pełnego potencjału. W rzeczywistości tylko 2% BNNT jest otwartych z obu stron, mówi Cetindag. Naukowcy pracują teraz nad zwiększeniem odsetka nanorurek otwartych z obu stron membrany.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zmiany klimatyczne mogą w wielu miejscach na świecie zmniejszyć zdolność gleby do absorbowania wody, twierdzą naukowcy z Rutgers University. To zaś będzie miało negatywny wpływ na zasoby wód gruntowych, produkcję i bezpieczeństwo żywności, odpływ wód po opadach, bioróżnorodność i ekosystemy.
      Wskutek zmian klimatu na całym świecie zmieniają się wzorce opadów i inne czynniki środowiskowe, uzyskane przez nas wyniki sugerują, że w wielu miejscach na świecie może dość szybko dojść do znacznej zmiany sposobu interakcji wody z glebą, mówi współautor badań Daniel Giménez. Sądzimy, że należy badać kierunek, wielkość i tempo tych zmian i włączyć je w modele klimatyczne. Uczony dodaje, że obecność wody w glebie jest niezbędna, by ta mogła przechowywać węgiel, jej brak powoduje uwalnianie węgla do atmosfery.
      W ubiegłym roku w Nature ukazał się artykuł autorstwa Giméneza, w którym naukowiec wykazał, że regionalne wzrosty opadów mogą prowadzić do mniejszego przesądzania wody, większego jej spływu po powierzchni, erozji oraz większego ryzyka powodzi. Badania wykazały, że przenikanie wody do gleby może zmienić się już w ciągu 1-2 dekad zwiększonych opadów. Jeśli zaś mniej wody będzie wsiąkało w glebę, mniej będzie dostępne dla roślin i zmniejszy się parowanie.
      Naukowcy z Rutgers University od 25 lat prowadzą badania w Kansas, w ramach których zraszają glebę na prerii. W tym czasie odkryli, że zwiększenie opadów o 35% prowadzi do zmniejszenia tempa wsiąkania wody w glebę o 21–35 procent i jedynie do niewielkiego zwiększenia retencji wody.
      Największe zmiany zostały przez naukowców powiązane ze zmianami w porach w glebie. Duże pory przechwytują wodę, z której korzystają rośliny i mikroorganizmy, co prowadzi do zwiększonej aktywności biologicznej, poprawia obieg składników odżywczych w glebie i zmniejsza erozję.
      Gdy jednak dochodzi do zwiększenia opadów, rośliny mają grubsze korzenie, które mogą zatykać pory, a to z kolei powoduje, że gleba słabiej się poszerza i kurczy gdy wody jest więcej lub mniej.
      W kolejnym etapie badań naukowcy chcą dokładnie opisać mechanizm zaobserwowanych zmian, by móc ekstrapolować wyniki badań z Kansas na inne regiony świata i określić, w jaki sposób zmiany opadów wpłyną na gleby i ekosystemy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Oczyszczanie wody z rozpuszczalników organicznych, takich jak trichloroetylen (TRI), to nic nowego. Ale znalezienie metody, która takie zanieczyszczenia rzeczywiście neutralizuje, a nie tylko przesuwa w inne miejsce, to już wyczyn. Zespół pod kierunkiem dr hab. Anny Śrębowatej opracował metodę katalitycznego wodorooczyszczania, czyli przekształcania TRI w mniej szkodliwe dla środowiska węglowodory. Dzięki naukowcom z IChF PAN woda, nie tylko w naszych kranach, ale też w rzekach, może być czystsza i bezpieczniejsza dla zdrowia.
      Czysta woda to skarb, a zarazem dobro coraz trudniej dostępne. Rozmaite zanieczyszczenia są powszechne, a część z nich niezwykle trudno usunąć. Do takich zanieczyszczeń należy trichloroetylen (w Polsce oznaczany akronimem TRI). Ten organiczny rozpuszczalnik był powszechnie stosowany np. w syntezach organicznych, pralniach chemicznych oraz do przemysłowego odtłuszczania metali w procesie ich obróbki. Ze względu na szkodliwość od 2016 r. jego użycie zostało oficjalnie zakazane. Jednakże biorąc pod uwagę trwałość, może on jeszcze przez wiele lat występować zarówno w wodzie, jak i glebie – wyjaśnia Emil Kowalewski z zespołu, który opracował nowatorską metodę oczyszczania wody z tego związku. Projekt jest częścią globalnego trendu skoncentrowanego na ochronie zasobów wodnych. Prowadzone badania mogą być interesujące dla przemysłu, stać się potencjalnym punktem wyjścia do opracowania nowatorskich systemów oczyszczania wody. Dlaczego?
      Dzisiejsze oczyszczalnie ścieków to systemy składające się z wielu procesów fizycznych, chemicznych i biologicznych, ale efektywnie eliminują głównie konwencjonalne zanieczyszczenia. Inne przy odpowiednio wysokich stężeniach mogą pozostawać w wodzie. Tymczasem trichloroetylenu nie powinno być w niej wcale, ze względu na to, że jest mutagenny, kancerogenny, teratogenny, a do tego niezwykle trwały. Kumuluje się i zostaje na dnie zbiorników, a że jego rozpuszczalność w wodzie jest bardzo słaba, może szkodzić jeszcze przez wiele lat.
      Dziś z takimi związkami radzimy sobie, głównie przeprowadzając ich sorpcję. Jednakże w ten sposób jedynie przenosimy zagrożenie z miejsca na miejsce. Atrakcyjnym rozwiązaniem wydaje się katalityczne wodorooczyszczanie, czyli przekształcanie TRI w mniej szkodliwe dla środowiska węglowodory. Aby w pełni wykorzystać potencjał drzemiący w tej metodzie, trzeba było jednak opracować wydajny, stabilny i tani katalizator -mówi dr hab. Anna Śrębowata, profesor IChF.
      Wcześniej przeprowadzaliśmy badania z katalizatorami palladowymi. Były skuteczne, ale kosztowne - uśmiecha się Emil Kowalewski. Nowe katalizatory niklowe, opracowane w IChF PAN, pozwalają w tani i efektywny sposób prowadzić proces oczyszczania wody w trybie przepływowym, a przy tym są proste w syntezie. Wykorzystując katalizator, w którym nanocząstki niklu o średnicy ok. 20 nm osadzamy na powierzchni węgla aktywnego, łączymy właściwości sorpcyjne węgla i aktywność katalityczną niklu - wyjaśnia dr Kowalewski. W swoich badaniach naukowcy z IChF PAN wykazali ponadto, że nanocząstki niklu osadzone na węglu aktywnym o częściowo uporządkowanej strukturze wykazują wyższą aktywność i stabilność niż analogiczny katalizator oparty na nośniku o strukturze amorficznej.
      Naukowcy są jednak najbardziej dumni z innowacyjnego elementu swoich badań: technologii przepływowej. Dzięki niej można optymalizować parametry procesu, zmniejszyć ilość odpadów, a przy tym wykorzystywać katalizatory, które w reaktorach okresowych (czyli takich, gdzie jednorazowo oczyszcza się określoną partię produktu) były nieefektywne lub wręcz nieskuteczne. Tak było z naszym katalizatorem niklowym - opowiada dr Kowalewski. Bez technologii przepływowej jego zdolności do utylizowania TRI szybko spadały, katalizator ulegał zatruciu. W reaktorze przepływowym nawet po 25 godzinach nie obserwowaliśmy spadku aktywności, choć prowadziliśmy badania na stężeniach około 8000 razy przekraczających polskie normy jego zawartości w wodzie pitnej.
      Gdzie można wykorzystać nowatorską metodę? Przede wszystkim w stacjach uzdatniania wody i oczyszczalniach ścieków. Tam, gdzie chcemy, żeby woda trafiająca do "końcowego odbiorcy", niezależnie czy jest to użytkownik wody z kranu, czy pływająca w rzece ryba, była czysta.
      A co zrobić z produktami reakcji wodorooczyszczania wody z trichloroetylenu? Powstającymi związkami są węglowodory, głównie etylen. Nie powstaje go jednak na tyle dużo, by wystarczyło na dojrzewalnię bananów - uśmiecha się półżartem naukowiec. Po prostu się ulotni...

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Hiszpanii powstała woda o smaku wina, która pozwala konsumentom cieszyć się wybornym smakiem bez ryzyka upojenia alkoholowego. Vida Gallaecia to efekt 2-letniej współpracy między Bodega Líquido Gallaecia i Narodowym Komitetem Badań Naukowych (Consejo Superior de Investigaciones Científicas, CSIC).
      Ponoć finalny produkt smakuje jak wino, ale nie zawiera alkoholu i jest niskokaloryczny. Receptura to, oczywiście, tajemnica. Wiadomo tylko tyle, że wykorzystuje się flawonole z winogron i wytłoczyn po produkcji wina.
      Woda jest wzbogacana flawonolami z winogron i resztek po produkcji wina Godello. [Zdecydowaliśmy się na to, bo] wiele badań powiązało spożycie flawonoli z korzyściami dla zdrowia. Mają one, na przykład, pozytywny wpływ na cukrzycę. [Trudno się zresztą dziwić, gdyż] działają przeciwutleniająco, antybakteryjnie i kardioochronnie - podkreśla dr Carmen Martínez z Misión Biológica de Salcedo (CSIC).
      Vida Gallaecia jest wzbogacana smakami białego (Godello) i czerwonego szczepu winogron (Mencia, jaen). Sama woda pochodzi z galicyjskich źródeł.
      Produkt miał niedawno swoją premierę. Teraz Bodega Líquido Gallaecia szuka partnerów handlowych. Niedługo wodę o smaku wina będzie można kupić w Hiszpanii, ale ponoć winiarze widzą największy potencjał w rynku japońskim.
      Z bodegą kontaktowały się też pewne linie lotnicze, które chciałyby serwować napój w swoich maszynach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Misja OSIRIS-REx, która niedawno dotarła do asteroidy Bennu, odkryła uwięzioną wewnątrz wodę. To potwierdzenie, że Bennu jest bardzo cennym obiektem do badań naukowych.
      OSIRIS-REX znajduje się w odległości kilkunastu kilometrów od asteroidy. Badania rozpoczęły się przed tygodniem. Naukowcy dysponują już pierwszymi danymi. Pochodzą one z dwóch spektrometrów OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) oraz OSIRIS-REx Thermal Emission Spectrometer (OTES). Wskazują one na istnienie grup hydroksylowych, molekuł składających się z atomów tlenu i wodoru. Uczeni przypuszczają, że istnieją one w całej asteroidzie i są zamknięte w tworzących ją glinach. To zaś oznacza, że w którymś momencie swojej historii materiał tworzący Bennu zetknął się z wodą.
      Sama asteroida jest zbyt mała, by występowała na niej woda w stanie ciekłym, jednak odkrycie grup hydroksylowych wskazuje, że ciekła woda była obecna na znacznie większej asteroidzie macierzystej, z której Bennu powstała.
      Obecność minerałów zawierających grupy hydroksylowe potwierdza, że Bennu, pozostałość po formowaniu się Układu Słonecznego, jest wspaniałym obiektem badań. Gdy w 2023 roku na Ziemię zostaną przywiezione próbki asteroidy, naukowcy zyskają skarbiec nowych informacji o historii i ewolucji Układu Słonecznego, mówi Amy Simon z Goddard Space Flight Center.
      Dane przekazane przez OSIRIS-REx Camera Suite (OCAMS) potwierdzają prawdziwość modelu asteroidy, który powstał w 2013 roku na potrzeby misji. Model ten bardzo blisko przypomina rzeczywisty kształt, średnicę i prędkość obrotową asteroidy.
      Powierzchnia Bennu to mieszanina fragmentów wypełnionych skałami i fragmentów dość płaskich. Ilość skalistych nierówności jest jednak większa niż się spodziewano. Zespół naukowy chce bliżej przyjrzeć się asteroidzie, by dobrze wybrać miejsce, z którego zostaną pobrane próbki.
      Wstępne dane wskazują, że wybraliśmy dobry obiekt dla misji OSIRIS-REx. Dotychczas nie napotkaliśmy na żadne problemy, z którymi nie moglibyśmy sobie poradzić. Sonda jest w dobrej kondycji, a instrumenty naukowe pracują lepiej, niż to wymagane. Czas rozpocząć naszą przygodę, stwierdził Dante Lauretta, główny naukowiec misji.
      Obecnie OSIRIS-REx wykonuje wstępne badania asteroidy, przelatując nad jej równikiem oraz oboma biegunami w odległości 7 kilometrów. Na ich podstawie zostanie obliczona masa obiektu. Jej znajomość jest niezbędnym elementem potrzebnym do umieszczenia sondy na orbicie Bennu.
      Po raz pierwszy OSIRIS-REx ma trafić na orbitę Bennu 31 grudnia. Pozostanie tam do połowy lutego. Później rozpocznie kolejną serię przelotów nad asteroidą. Już obecnie wiadomo, że orbita na którą trafi OSIRIS-REx będzie znajdowała się nad centralną częścią Bennu, na wysokości 1,4–2 kilometrów.

      « powrót do artykułu
×
×
  • Create New...