Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Jądro ciemności bez jądra
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Po raz pierwszy od niemal 30 lat zauważono najcięższe jądro rozpadające się metodą emisji protonu, poinformowali naukowcy z Laboratorium Akceleratorowego na Universytecie w Jyväskylä. Poprzednie najcięższe jądro rozpadające się w ten sposób zarejestrowano w 1996 roku. Emisja protonu to rzadki rodzaj rozpadu radioaktywnego, w wyniku którego jądro emituje proton, by stać się bardziej stabilne, mówi doktorantka Henna Kokkonen. To kolejne osiągnięcie młodej uczonej, o którym informujemy.
Henna zaraz po ukończeniu studiów odkryła nieznany izotop astatu, najrzadszego pierwiastka występującego w skorupie ziemskiej. Zauważony przez nią astat-190 był najlżejszym izotopem astatów. Jednocześnie uczona zauważyła sygnały, które mogły świadczyć o pojawieniu się innego nieznanego izotopu, astatu-188. I to właśnie jego dotyczy najnowsze odkrycie. Jak bowiem stwierdziła obecnie Henna, astat-188 – najlżejszy izotop astatu – jest najcięższym pierwiastkiem rozpadającym się poprzez emisję protonu. Dotychczas tytuł ten należał do bizmutu-185.
Astat-188 ma 85 protonów i 103 neutrony. Tak egzotyczne pierwiastki są trudne do badania, gdyż istnieją bardzo krótko i mają niski przekrój czynny, a więc istnieje niewielkie prawdopodobieństwo jego zarejestrowania. "Jądro zostało uzyskane w reakcji fuzji-ewaporacji, poprzez wzbudzenie celu ze srebra za pomocą strumienia jonów strontu-84", wyjaśnia Kalle Auranen.
Badania, prowadzone przez Hennę Kekkonen, są częścią jej pracy doktorskiej i stanowią kontynuację badań, jakie prowadziła na potrzeby magisterki. Bardzo rzadko dochodzi do odkryć izotopów, a ja mam okazję po raz drugi przejść do historii, cieszy się młoda uczona. Każdy eksperyment to wyzwanie, ale to wspaniałe uczucie, gdy może prowadzić badania, które pozwalają nam lepiej zrozumieć materię i strukturę jądra atomowego, dodaje.
Źródło: New proton emitter 188At implies an interaction unprecedented in heavy nuclei
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy od dziesięcioleci spierają się o to, czy dochodzi do wymiany materiału pomiędzy jądrem Ziemi, a warstwami położonymi powyżej. Jądro jest niezwykle trudno badać, częściowo dlatego, że rozpoczyna się na głębokości 2900 kilometrów pod powierzchnią planety.
Profesor Hanika Rizo z Carleton University, wykładowca na Queensland University of Technology David Murphy oraz profesor Denis Andrault z Universite Clermont Auvergne informują, że znaleźli dowody na wymianę materiału pomiędzy jądrem, a pozostałą częścią planety.
Jądro wytwarza pole magnetyczne i chroni Ziemię przed szkodliwym promieniowaniem kosmicznym, umożliwiając istnienie życia. Jest najcieplejszym miejscem Ziemi, w którym temperatury przekraczają 5000 stopni Celsjusza. Prawdopodobnie odpowiada ono za 50% aktywności wulkanicznej naszej planety.
Aktywność wulkaniczna to główny mechanizm, za pomocą którego Ziemia sie chłodzi. Zdaniem Rizo, Murphy'ego i Andraulta niektóre procesy wulkaniczne, np. te na Hawajach czy na Islandii, mogą brać swój początek w jądrze i transportować ciepło bezpośrednio z wnętrza planety. Twierdzą oni, że znaleźli dowód na to, iż do płaszcza ziemskiego trafia materiał z jądra.
Odkrycia dokonano badając niewielkie zmiany w stosunku izotopów wolframu. Wiadomo, że jądro jest zbudowane głównie z żelaza i aluminium oraz z niewielkich ilości wolframu, platyny i złota rozpuszczonych w żelazno-aluminiowej mieszaninie. Wolfram ma wiele izotopów, w tym wolfram-182 i wolfram-184. Wiadomo też, że stosunek wolframu-182 do wolframu-184 jest w płaszczu znacznie wyższy niż w jądrze. Dzieje się tak dlatego, że hafn, który nie występuje w jądrze, posiada izotop hafn-182. Izotop ten występował w przeszłości w płaszczu, jednak obecnie już go nie ma, gdyż rozpadł się do wolframu-182. Właśnie dlatego stosunek wolframu-182 do wolframu-184 jest w płaszczu wyższy niż w jądrze.
Uczeni postanowili więc zbadać stosunek izotopów wolframu, by przekonać się, czy na powierzchni występują skały zawierające taki skład wolframu, jaki odpowiada jądru. Problem w tym, że istnieje mniej niż 5 laboratoriów zdolnych do badania wolframu w ilościach nie przekraczających kilkudziesięciu części na miliard.
Badania udało się jednak przeprowadzić. Wykazały one, że z czasem w płaszczu Ziemi doszło do znaczącej zmiany stosunku 182W/184W. W najstarszych skałach płaszcza stosunek ten jest znacznie wyższy niż w skałach młodych. Zespół badaczy uważa, że zmiana ta wskazuje, iż materiał z jądra przez długi czas trafiał do płaszcza ziemskiego. Co interesujące, na przestrzeni około 1,8 miliarda lat nie zauważono zmiany stosunku izotopów. To oznacza, że pomiędzy 4,3 a 2,7 miliarda lat temu do górnych warstw płaszcza materiał z jądra nie trafiał w ogóle lub trafiało go niewiele. Jednak 2,5 miliarda temu doszło do znaczącej zmiany stosunków izotopu wolframu w płaszczu. Uczeni uważają, że ma to związek z tektoniką płyt pod koniec archaiku.
Jeśli materiał z jądra trafia do na powierzchnię, to oznacza, że materiał z powierzchni Ziemi musi trafiać głęboko do płaszcza. Proces subdukcji zabiera bogaty w tlen materiał w głąb planety. Eksperymenty zaś wykazały, że zwiększenie koncentracji tlenu na granicy płaszcza i jądra może spowodować, że wolfram oddzieli się od jądra i powędruje do płaszcza. Alternatywnie, proces zestalania wewnętrznej części jądro może prowadzić do zwiększenia koncentracji tlenu w części zewnętrznej. Jeśli uda się rozstrzygnąć, który z procesów zachodzi, będziemy mogli więcej powiedzieć o samym jądrze Ziemi.
Jądro było w przeszłości całkowicie płynne. Z czasem stygło i jego wewnętrzna część skrystalizowała, stając się ciałem stałym. To właśnie obrót tej części jądra tworzy pole magnetyczne chroniące Ziemię przed promieniowaniem kosmicznym. Naukowcy chcieliby wiedzieć, jak przebiegał proces krystalizacji o określić jego ramy czasowe.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Adolf Hitler zmarł w Berlinie w 1945 roku, oświadczyli francuscy badacze, którzy uzyskali dostęp do przechowywanych w Moskwie fragmentów zębów byłego kanclerza Niemiec. Zęby są autentyczne, nie ma co do tego wątpliwości. Nasze badania dowodzą, że Hitler zmarł w 1945 roku, mówi profesor Philippe Charlier. Możemy przestać zajmować się teoriami spiskowymi. Nie uciekł on do Argentyny na pokładzie okręgu podwodnego, nie mieszka w ukrytej bazie na Antarktyce ani po ciemnej stronie Księżyca, dodaje uczony.
Wyniki badań prowadzonych przez pięcioosobowy zespół ukazały się w piśmie European Journal of Internal Medicine.
W marcu i lipcu 2017 roku rosyjska Federalna Służba Bezpieczeństwa oraz archiwa państwowe zezwoliły zagranicznym naukowcom – po raz pierwszy od 1945 roku – zbadać szczątki Hitlera. Francuzom pokazano m.in. fragment czaszki z dziurą po lewej stronie. Nie pozwolono im jednak pobrać stamtąd próbek. Mogli jednak przeprowadzić badania porównawcza i, jak twierdzą, zaprezentowany im fragment był „całkowicie porównywalny” ze zdjęciem rentgenowskim czaszki Hitlera wykonanym na rok przed jego śmiercią.
Francuzi mogli za to zbadać zęby przywódcy III Rzeszy. Znaleźli na nich kamień nazębny, jednak bez śladów tkanek mięsa. Hitler był wegetarianinem. Nie znaleziono też na nich śladów prochu, co pokazuje, że Hitler nie popełnił samobójstwa strzelając sobie w usta. Z kolei na sztucznych zębach, które kanclerz posiadał, odnaleziono niebieskawe ślady. Zdaniem naukowców mogły one powstać wskutek reakcji cyjanku z metalem.
Badania potwierdzają powszechnie przyjętą wersję, że Hitler zmarł 30 kwietnia 1945 roku. Miał zażyć cyjanek, a następnie strzelić sobie w głowę.
Profesor Philippe Charlier to specjalista w dziedzinie patologii i paleopatologii. Jego głównym obszarem zainteresowań są badania mumii i starych szczątków ludzkich. Badał on m.in. zachowane serce Ryszarda Lwie Serce.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Microsoft zaprezentował materiał wideo, z którego wynika, iż system Windows 8 może uruchamiać się nawet w ciągu kilkunastu sekund. W porównaniu z Windows 7 czas startu nowego OS-u będzie krótszy - w zależności do konfiguracji - o 30-70 procent.
Inżynierowie Microsoftu osiągnęli to stosując pewną sztuczkę. Otóż podczas zamykania systemu do pliku hibernacyjnego nie jest zapisywana cała zawartość pamięci. System zapisuje tylko sesje użytkownika oraz minimum informacji o stanie jądra. Sesja nie jest wyłączana, a hibernowana. Następnie podczas startu następuje dekompresja pliku i odczytanie z niego danych.
Największe oszczędności osiągną użytkownicy interfejsu UEFI. Jest on bowiem nowocześniejszy od BIOS-u, a jego kod lepiej zoptymalizowano. Microsoft zapewnia, że nowy sposób startu będzie zauważalny dla użytkowników każdego komputera, a na maszyna z UEFI korzystających z szybkich dysków SSD różnica jest „dramatyczna".
http://www.youtube.com/watch?v=9ia3zBs42cc -
przez KopalniaWiedzy.pl
Linus Torvalds zdecydował, że obecna wersja jądra Linuksa 3.1 zostanie opublikowana za pośrednictwem Github, a nie Kernel.org. Ten ostatni serwis padł bowiem ofiarą włamania i wciąż nie można uznać go za w pełni bezpieczny.
Torvalds podkreśla, że jego decyzja nie oznacza rezygnacji z Kernel.org. Postanowił jedynie, że kolejne wersje jądra będą publikowane na bieżąco. Tymczasem administratorzy Kernel.org wciąż nie poradzili sobie z infekcją rootkitem Phalanx.
Wszystko wskazuje na to, że ataku nie zauważono przez 17 dni. Obecnie trwają prace mające na celu oczyszczenie serwerów Kernel.org i ich zabezpieczenie.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.