Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nic się nie zmarnuje

Rekomendowane odpowiedzi

Naukowcy z uniwersytetów w Jaén i Granadzie odkryli, że z pestek oliwek można wytwarzać bioetanol. To wspaniała wiadomość zarówno dla ekologów, jak i dla przemysłu olejowego. Każdego roku producenci zastanawiają się bowiem, co zrobić z 4 mln ton pestek, które pozostały po wytłoczeniu oliwy i zapakowaniu do słoików wydrylowanych oliwek. Wygląda jednak na to, że problem odpadów został rozwiązany.

O autorskiej technologii Hiszpanów można poczytać w najnowszym numerze Journal of Chemical Technology & Biotechnology. Niskie koszty transportu i przetwarzania czynią z pestek oliwek wyjątkowo atrakcyjny materiał na biopaliwa.

Bioetanol coraz częściej zapełnia baki samochodów, ale do tej pory wytwarzano go głównie z roślin uprawnych, zajmując w ten sposób cenny grunt. Niektórzy wspominali też o zagrożeniu bezpieczeństwa pokarmowego ludzi i ich zwierząt. Hiszpanie wytworzyli zaś paliwo z nikomu niepotrzebnych odpadów.

Pestkę wykorzystywano dotąd raczej w kosmetyce, np. w postaci peelingu. Jest dość spora, bo zajmuje aż ¼ owocu. Zawiera dużo polisacharydów, które można rozłożyć do cukrów prostych i sfermentować, uzyskując w ten sposób etanol.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Miąższ czerwonych pomarańczy staje się karmazynowo-krwisty dzięki obecności antocyjanów. Aby barwniki zrobiły swoje, podczas dojrzewania musi jednak wystąpić chłodny okres. Idealna kombinacja chłodnych słonecznych dni oraz ciepłych nocy występuje wokół Etny. Naukowcy z Wielkiej Brytanii odnaleźli gen odpowiadający za "krwistość" owoców. Ruby, bo tak go nazwano, został wprowadzony do nasion popularniejszej odmiany Walencja, dzięki czemu smaczne owoce będzie można uzyskać w różnych rejonach świata. I to mniejszym niż dotychczas kosztem.
      Prof. Cathie Martin z Centrum Johna Innesa przy Norwich Research Park podkreśla, że antocyjany sprzyjają zdrowiu układu sercowo-naczyniowego, pomagają też w kontrolowaniu cukrzycy i ograniczeniu otyłości. Są bowiem silnymi przeciwutleniaczami i działają przeciwzapalnie. Co ważne, indukują ekspresję genu adiponektyny - cytokiny wytwarzanej w tkance tłuszczowej, która działa przeciwmiażdżycowo i zwiększa insulinowrażliwość.
      Wcześniejsze badania dotyczące soku z czerwonych pomarańczy wykazały np., że zmniejsza on stres oksydacyjny u diabetyków. Studium z 2010 r. zademonstrowało, że u myszy ogranicza on rozwój adipocytów; w porównaniu do wody czy zwykłego (jasnego) soku pomarańczowego zapewnia większą oporność na rozwój otyłości.
      Czerwone pomarańcze są, oczywiście, uprawiane poza Sycylią, np. w Japonii, RPA czy Iranie, ale w niektórych latach marnują się całe zbiory, bo w okresie dojrzewania nie ma odpowiednich warunków. Na Florydzie lub w Brazylii zawartość antocyjanów jest niewielka i zmienna.
      Brytyjczycy wyizolowali gen Ruby z miąższu czerwonych i jasnych pomarańczy. Odkryli, że jest on kontrolowany przez ruchome elementy genetyczne, które są z kolei aktywowane przez stres w postaci chłodu. Zespół dotarł do wszystkich odmian czerwonych pomarańczy, analizując, czy któreś wytwarzają antocyjany bez chłodu. Większość kultywarów pochodzi bezpośrednio lub pośrednio z Sycylii, lecz jedna stara odmiana (Jingxian) z Chin. Choć w jej przypadku produkcja barwników zależy od innego ruchomego elementu i tak musi go aktywować zimno.
      Po zakończeniu etapu manipulacji genetycznych hodowcy mają nadzieję doczekać się swoich owoców jeszcze przed końcem roku. Miejmy nadzieję, że w niedalekiej przyszłości owoce z krwistym miąższem będą rosnąć w "pomarańczowych zagłębiach" świata Florydzie i Brazylii. Staną się wtedy bardziej dostępne, a z ich właściwości prozdrowotnych skorzysta więcej osób.
    • przez KopalniaWiedzy.pl
      Szkockie destylarnie zasilą 9 tysięcy gospodarstw domowych energią i ciepłem ze spalania odpadów po produkcji whisky.
      W projekcie biorą udział niektóre z najbardziej znanych tutejszych destylarni. Ostatnio podpisano kontrakty na budowę zakładu w Rothes w słynącym z whisky regionie Strathspey. Ma on powstać do 2013 roku. Realizacja całości będzie kosztować 50 mln funtów.
      Flagowy przemysł Szkocji generuje ogromne ilości odpadów w postaci wytłoków z ziarna oraz osadów z miedzianych destylatorów. Spółka joint venture Helius Energy i Combination of Rothes Distillers (CoRD) zamierza spalać wytłoki z dodatkiem drewnianych strużyn. Energię do domów ma dostarczać duńska firma inżynieryjna Energie Technick. Z osadów z destylatora powstanie zagęszczony nawóz organiczny i pasza dla zwierząt lokalnych rolników.
      Niektórzy ekolodzy zgłosili zastrzeżenia, że część drewna będzie pochodzić spoza regionu, jednak zwolennicy projektu podkreślają, że moc rzędu 7,2 megawata (tyle dałyby dwie duże turbiny wiatrowe) doskonale odpowiada lokalnemu zapotrzebowaniu i pozwala zagospodarować marnowane dotąd materiały.
      Pięćdziesiąt ze 100 szkockich destylarni znajduje się w regionie Strathspey, dlatego jak twierdzi dyrektor generalny CoRD Frank Burns, to idealna lokalizacja dla bioelektrowni, która powstanie w już funkcjonującym ośrodku przemysłowym. Mamy duże wsparcie ze strony lokalnej społeczności. Na etapie planowania nie zgłoszono żadnych obiekcji [...].
      Do zakładu trafią odpady z 16 destylarni w Strathspey, w tym ze znanych Glenlivet, Chivas Regal, Macallan i Famous Grouse. Wszystkie znajdują się w pobliżu planowanej spalarni.
    • przez KopalniaWiedzy.pl
      ONZ wzywa do podjęcia jak najszybszych działań w celu zapobieżenia gromadzeniu się olbrzymich ilości odpadów elektronicznych w takich krajach jak Chiny, Indie czy liczne państwa Afryki. Z raportu, w którym uwzględniono 11 państw wynika, iż w samych tylko Indiach liczba wyrzucanych starych komputerów wzrośnie o 500 procent do roku 2020.
      Zużyta elektronika szkodzi nie tylko środowisku naturalnemu, ale stwarza też poważne zagrożenie dla zdrowia ludzi. Tymczasem każdego roku na świecie przybywa 40 milionów ton elektronicznych odpadów. Wiele z nich trafia do biedniejszych krajów, gdyż są tam wywożone z krajów bogatszych i trafiają na nielegalne wysypiska. Na szczęście nie zawsze się tak dzieje i w niektórych przypadkach z elektronicznych odpadów odzyskuje się metale szlachetne. A tych jest sporo. Z raportu ONZ wynika, że produkcja telefonów komórkowych i komputerów zużywa 3% światowego wydobycia złota i srebra, 13% paladu i 15% kobaltu.
      Często jednak przy ich odzyskiwaniu stosuje się niezwykle szkodliwe metody. Na przykład w Chinach są one często palone w prymitywnych piecach. Toksyczny dym z tworzyw sztucznych zatruwa wówczas ludzi i środowisko naturalne. Z podobnymi problemami muszą mierzyć się Indie, Brazylia czy Meksyk.
      W swoim raporcie ONZ przypomina, że to, co dla jednej osoby jest odpadem, dla innej może być źródłem cennych surowców. Trzeba tylko opracować odpowiednią strategię obchodzenia się z odpadami.
    • przez KopalniaWiedzy.pl
      Spożywanie oleju z pestek granatu może zapobiec rozwojowi cukrzycy typu 2. Dowiodły tego badania na myszach, które karmiono wysokotłuszczową paszą (British Journal of Nutrition).
      Olej z pestek granatu zawiera dużo sprzężonego kwasu linolowego (ang. conjugate linolenic acid, CLA). Podczas eksperymentu na gryzoniach okazało się, że jego konsumpcja zmniejsza przyrost wagi i poprawia wrażliwość na insulinę.
      Do tej pory uwaga naukowców skupiała się raczej na soku i pulpie z granatów. Są one korzystne dla serca, stawów, chronią też przed nowotworami prostaty. Dzieje się tak za sprawą przeciwutleniaczy, których w owocach i produkowanych z nich przetworach jest naprawdę sporo. Chodzi tu głównie o elagotaniny, np. punikalaginy oraz punikaliny. W pestkach występuje bardzo mało przeciwutleniaczy, ale są one bogatym źródłem izomeru cis-9, trans-11 CLA.
      Zespół dr. Briana McFarlina z Uniwersytetu w Houston utworzył z 60 samców myszy trzy grupy po 20 osobników. Pierwsza jadła wysokotłuszczową karmę, druga również, ale zwierzętom podawano dodatkowo suplement w postaci oleju z pestek granatu (61,8 mg dziennie). Trzecia grupa pozostawała na zwykłej diecie.
      Pod koniec eksperymentu okazało się, że myszy z 2. grupy przybrały na wadze o 10 g mniej niż osobniki z 1. grupy. W ich przypadku wzrosła też wrażliwość na insulinę, Do tego dołączył się skok poziomu adiponektyny, która pośrednio wspomaga insulinę, i spadek stężenia leptyny. To ważne, gdyż leptyna i adiponektyna są ściśle związane z wagą ciała i jego budową.
      Amerykanie nie odnotowali, by olej oddziaływał na wzrost poziomu markerów chorób sercowo-naczyniowych. Niewykluczone, że powodem była za niska zawartość przeciwutleniaczy w preparacie bądź wykorzystano za małą jego dawkę.
    • przez KopalniaWiedzy.pl
      Fizycy z University of Texas w Austin opracowali nowy model reaktora jądrowego, który, gdy cały system zostanie już dopracowany, może znakomicie zredukować ilość odpadów powstających w elektrowniach atomowych.
      Mike Kotschenreuther, badacz a uniwersyteckiego Institute for Fusion Studies (IFS) i Wydziału Fizyki, mówi: Opracowaliśmy niedrogi sposób na wykorzystanie fuzji jądrowej do niszczenia odpadów powstałych podczas reakcji rozszczepiania.
      Energetyka jądrowa jest w czasie niezakłóconej pracy źródłem czystszej energii niż energia pozyskiwana z węgla. Największym problemem jest pozbywanie się odpadów. Obecnie są one przechowywane w formacjach geologicznych. Jednym z takich miejsc ma być np. Yucca Mountain w Newadzie. "Przechowalnia" zostanie otwarta w 2020 roku, a jej pojemność oszacowano na 77 000 ton odpadów. Jednak już w przyszłym roku ilość opadów z elektrowni jądrowych w USA przekroczy tę liczbę. Jako że energetyka jądrowa znowu zyskuje na popularności, można się spodziewać szybkiego wzrostu liczby odpadów, które wymagają specjalnego traktowania, gdyż są bardzo niebezpieczne dla środowiska naturalnego.
      Fizycy z Teksasu zaproponowali hybrydowy reaktor jądrowy, będący połączeniem reaktora tradycyjnego i fuzyjnego.
      Ich pomysł polega na zastosowaniu fuzyjnego (a więc działającego na zasadzie łączenia się dwóch lżejszych jąder w jedno cięższe) Compact Fusion Neutron Source (CFNS). Miałby on znajdować się wewnątrz tradycyjnego reaktora (działającego na zasadzie rozpadu cięższego jądra w lżejsze), napędzanego odpadami. Nadmiarowe neutrony z reakcji fuzyjnej podtrzymywałyby dodatkowo reakcję rozpadu, przyczyniając się do lepszego "wypalenia" odpadów.
      Proces przetwarzania paliwa jądrowego składałby się więc z dwóch etapów. W pierwszym z nich paliwo napędzałoby tradycyjną elektrownię. Z elektrowni takich wychodzi około 25% pierwotnego wkładu, zawierającego wysoce radioaktywne i toksyczne odpady. Byłyby one następnie przewożone do reaktora hybrydowego, gdzie ulegałyby dalszemu zniszczeniu. Taki reaktor nie dość, że produkowałby energię, to byłby w stanie zredukować ilość radioaktywnych odpadów tak, że zostałoby ich tylko 1% pierwotnego wkładu do tradycyjnej elektrowni. Jedna hybrydowa elektrownia potrzebna byłaby do obsłużenia odpadów z 10-15 elektrowni tradycyjnych.
      Naukowcy uważają, że ich system będzie tańszy od alternatywnych metod pozbywania się odpadów nuklearnych. Reaktor hybrydowy może być niewielkim urządzeniem o pojemności kilkunastu metrów sześciennych. Głównym problemem jest fakt, iż prace nad reaktorem fuzyjnym dopiero trwają. CFNS nie powstanie więc w najbliższym czasie.
      Kluczowym elementem CFNS będzie wynalezione na tej samej uczelni urządzenie o nazwie Super X Divertor. Jego zadaniem jest zabezpieczenie CFNS przez zniszczeniem przez olbrzymią temperaturę, która powstaje wewnątrz reaktora fuzyjnego. Super X Divertor to rozwiązanie, które zyskało uznanie specjalistów i posiadacze kilku testowych reaktorów fuzyjnych chcą je wykorzystać w swoich urządzeniach. 
      Prashant Valanju z IFS mówi, że połączenie reaktora fuzyjnego z tradycyjnym to pomysł, który od dawna krąży w środowisku naukowym. Zawsze wiedziano, że fuzja jest przydatna przy produkcji neutronów, a rozpad - przy produkcji energii. Teraz udowodniliśmy, że można stworzyć efektywny niewielki reaktor fuzyjny.
      Naukowcy, którzy pracowali nad nowym rodzajem reaktora, nie uważają go za rozwiązanie wszystkich problemów. Mają nadzieję, że dzięki niemu będziemy dysponowali czystszą energią atomową do czasu, aż nauczymy się korzystać z takich źródeł jak energia słoneczna czy energia fuzyjna. Hybryda, którą zaprojektowaliśmy, powinna być postrzegana jako technologia przejściowa - mówi Swadesh Mahajan.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...