Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Jak odkryć, skąd się bierze tkanka tłuszczowa? Zaczyna się od bardzo chudej myszy, a następnie wszczepia się jej kolejno różne typy komórek podejrzewanych o powodowanie rozwoju tej tkanki. Mozolna, lecz skuteczna metoda pozwoliła amerykańskim badaczom na rozwiązanie tej zagadki.

Autorami odkrycia są naukowcy z Howard Hughes Medical Institute oraz Rockefeller University. Zespół, prowadzony przez dr. Jeffreya Friedmana, odkrył tzw. komórki progenitorowe białych komórek tłuszczowych. Są one nieco podobne do komórek macierzystych, lecz, w przeciwieństwie do nich, mogą rozwijać się wyłącznie w kierunku pojedynczego typu dojrzałych komórek. Można więc powiedzieć, że są nieaktywne, lecz cały czas gotowe, by w odpowiedniej chwili podzielić się na dwie komórki, z których jedna wejdzie w skład dojrzałej tkanki tłuszczowej, zaś druga pozostanie komórką progenitorową i przejdzie w stan uśpienia aż do kolejnego momentu, kiedy potrzebny będzie kolejny jej podział.

Identyfikacja komórek progenitorowych białych komórek tłuszczowych dostarcza nam środków pozwalających na identyfikację czynników regulujących podziały oraz nabieranie funkcji przez komórki tłuszczowe, tłumaczy dr Friedman. Odkrycie może mieć niebagatelne znaczenie dla całej służby zdrowia walczącej nieustannie z pandemią otyłości.

Powstawanie tkanki tłuszczowej było dotychczas niejasne. Typowe komórki tłuszczowe, czyli adipocyty, są dojrzałymi komórkami pozbawionymi zdolności do podziału. Oznacza to, że nie mogą one prowadzić do wzrostu liczebności komórek wchodzących w skład tkanki. Przełom nastapił w momencie, gdy zastosowano technikę zwaną sortowaniem komórek aktywowanym przez fluorescencję (ang. fluorescence-activated cell sorting - FACS). Technika ta pozwala na odróżnienie poszczególnych typów komórek ze względu na cząsteczki występujące na ich powierzchni. Wykorzystuje się w tym celu przeciwciała - białka zdolne do wybiórczego wiązania określonych molekuł. Jeśli przeciwciało wyznakuje się odpowiednim barwnikiem, wówczas aparat do wykonywania FACS odróżnia komórki posiadające daną cząsteczkę na swojej powierzchni i oddziela je od pozostałych. Dzięki zastosowaniu tej techniki wyizolowano dwie populacje komórek, które mogły dawać początek tkance tłuszczowej.

Aby potwierdzić fizjologiczną rolę odkrytych komórek, wszczepiono je zmodyfikowanym genetycznie myszom, które nie posiadały tkanki tłuszczowej. Eksperyment pozwolił na stwierdzenie, że tylko jedna z grup, której komórki posiadają na swojej powierzchni białko CD24, powoduje wspomniany efekt. Ich odkrycie nie było jednak proste, gdyż u myszy niemodyfikowanych komórki te stanowią zaledwie 0,08% wszystkich komórek budujących tkankę tłuszczową.

W celu analizy rozwoju tkanki tłuszczowej badacze wykonali kolejną modyfikację genetyczną myszy. Stworzyli oni specjalną konstrukcję genową, która umożliwiła produkcję lucyferazy - enzymu niewystepującego naturalnie u ssaków, mającego zdolność bioluminescencji (świecenia) po dodaniu odpowiedniego składnika, zwanego lucyferyną. Enzym był jednak produkowany wyłącznie wtedy, gdy komórka otrzymywała sygnał do produkcji leptyny - hormonu wytwarzanego naturalnie wyłącznie w tkance tłuszczowej. Modyfikacja taka pozwalała na obserwację świecenia wyłącznie wtedy, gdy w organizmie zwierzęcia powstawały nowe komórki tłuszczowe. 

Współpracujący z Friedmanem badacz, dr Matt Rodeheffer, główny autor publikacji, wszczepił myszom pozbawionym tkanki tłuszczowej komórki wzbogacone o gen kodujący lucyferazę. Zaobserwowany wzrost świecenia świadczył o tym, że doszło w tym miejscu do rozwoju dojrzałych adipocytów. Co więcej, zabieg wpływał także na kondycję zwierząt, pozwalał bowiem na zwalczenie objawów cukrzycy związanej z całkowitym brakiem tkanki tłuszczowej. Zaobserwowano także wzmożoną syntezę związków charakterystycznych dla komórek tłuszczowych, co dodatkowo potwierdza rolę komórek produkujących CD24 w opisywanym procesie.

To odkrycie pozwala nam lepiej zrozumieć podstawowe procesy biologiczne zachodzące w tkance tłuszczowej i umożliwia nam oraz innym badaczom analizę tych komórek w organizmach żywych zwierząt. Pozwala to także na ustalenie czynników molekularnych odpowiedzialnych za formowanie tkanki tłuszczowej, tlumaczy dr Rodeheffer. Potencjalnie możemy badać, w jaki sposób wzrost i nabieranie funkcji przez te komórki jest regulowane w przebiegu otyłości, a także określić, czy procesy na poziomie molekularnym są związane z regulacją [funkcjonowania] tkanki tłuszczowej oraz rozwojem różnych patologii, takich jak cukrzyca, choroby sercowo-naczyniowe, które są związane z otyłością i syndromem metabolicznym.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czyli jak już złapiesz wagę to trudno będzie ją zrzucić. Teoria potwierdza smutną rzeczywistość.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nawet nie o to chodzi, że ciężko zrzucić, bo to jest możliwe. Większym problemem jest to, że jesli wyhodujesz odpowiednio dużą pulę komórek tłuszczowych, one bardzo chętnie będą wychwytywały każdy nadmiar substancji odżywczych. Co gorsze, organizm poczuje, że skoro kiedyś miał więcej, a teraz ma mniej, będzie szukał każdej okazji, żeby wyhodować tłuszczyk. I to jest dopiero problem!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Nowe badania wykazały, że o ile kobiety i mężczyźni z większą masą mięśniową są mniej narażeni na ryzyko zgonu z powodu choroby serca, to dodatkowo na kobiety korzystnie wpływa większa ilość tłuszczu. Okazuje się, że panie z większą masą tłuszczu są, niezależnie od masy mięśni, lepiej chronione przed zgonem z powodu chorób serca niż panie z mniejszą ilością tłuszczu. Do takich wniosków doszli badacze z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA).
      Szczegóły badań opisano w artykule Sex Differences in the Association of Body Composition and Cardiovascular Mortality opublikowanym na łamach recenzowanego Journal of the American Heart Association.
      Naukowcy przeprowadzili metaanalizę danych zebranych w ciągu 15 lat o odkryli, że zgony w wyniku chorób serca zdarzają się o 42% rzadziej wśród kobiet o wyższej masie mięśni i tłuszczu w porównaniu z kobietami posiadającymi mniej mięśni i tłuszczu. Okazało się jednak, że różnicy takiej nie widać u kobiet, które mają większą masę mięśniową ale niską masę tłuszczu. Wskazuje to, że większa ilość tkanki tłuszczowej chroni kobiety przez zgonem z tego powodu.
      U mężczyzn zanotowano zaś nieco inne zjawisko. Panowie o wysokiej masie mięśni i wysokiej masie tłuszczu – w porównaniu z panami o niskiej masie mięśni i niskiej masie tłuszczu – byli narażeni na o 26% mniejsze ryzyko zgonu z powodu chorób serca. Jednak u tych mężczyzn, u których występowała wysoka masa mięśniowa i niska masa tłuszczu, ryzyko zgonu z powodu chorób serca było o 60% mniejsze.
      American Heart Association szacuje, że każdego roku na zawały umiera 5 milionów mężczyzn i 3 miliony kobiet. Od 50 lat liczba zgonów z powodu ataków serca spada, jednak u kobiet spadek ten jest wolniejszy. Ponadto wydaje się, że ich liczba rośnie u pań w wieku 35–54 lat. Dlatego też naukowcy postanowili przyjrzeć się składowi ciała dużej grupy ludzi. Przeanalizowali dane 11 463 osób w wieku 20 lat i starszym. Badanych podzielili na cztery grupy: niska masa mięśniowa i niska masa tłuszczu, niska masa mięśni i wysoka masa tłuszczu, wysoka masa mięśni i niska masa tłuszczu oraz wysoka masa mięśni i wysoka masa tłuszczu. Dla każdej z tych grup określono odsetek zgonów z powodu chorób serca.
      Autorzy badań, Preethi Srikanthan, Tamara Horwich, Marcella Calfon Press, Jeff Gornbein i Karol Watson, zauważają, jak ważne jest branie pod uwagę różnic pomiędzy płciami podczas oceny ryzyka chorób serca oraz tworzenia odpowiednich zaleceń zdrowotnych. Szczególnie, jeśli chodzi o te związane z tkanką tłuszczową.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tkanka tłuszczowa kojarzy się z otyłością i chorobami. Istnieje jednak tłuszcz „dobry” i „zły”. Biała tkanka tłuszczowa służy magazynowaniu energii i to ona obciąża nasz organizm. Z kolei „dobry” tłuszcz, czyli brunatna tkanka, spala tłuszcz i służy utrzymywaniu prawidłowej ciepłoty ciała. Najnowsze badania pokazują, ze brunatny tłuszcz chroni nasze zdrowie.
      Dotychczas jednak nie było jasne, czy posiadacze większej ilości brunatnej tkanki tłuszczowej cieszą się lepszym zdrowiem.
      Badania nad brunatną tkaną tłuszczową nie są łatwe, gdyż trudno zidentyfikować osoby posiadające jej większe ilości. Tkanka ta jest bowiem ukryta głęboko w organizmie.
      Trudne nie oznacza jednak niemożliwe. Na łamach nowego numeru Nature Medicine znajdziemy raport z badań na ponad 52 000 osób przeprowadzonych przez naukowców z Rockefeller University. To największe tego typu badania na dorosłych ludziach. Wynika z nich, że osoby, które posiadają wykrywalne ilości brunatnej tkanki tłuszczowej są narażeni na mniejsze ryzyko chorób kardiologicznych i metabolicznych – od cukrzycy typu 2. po chorobę niedokrwienną serca.
      Po raz pierwszy udało się znaleźć związek pomiędzy tą tkanką a mniejszym ryzykiem rozwoju pewnych chorób. To potwierdza, że brunatna tkanka tłuszczowa może być wykorzystana w leczeniu, mówi profesor Paul Cohen.
      Brunatna tkanka tłuszczowa jest badana od dekad u zwierząt i noworodków. Dopiero w 2009 roku okazało się, że posiadają ją również dorośli. Zwykle znajduje się wokół szyi i ramion. Jednak prowadzenie szeroko zakrojonych badań tej tkanki było praktycznie niemożliwe. Widać ją bowiem jedynie na skanach z pozytonowej tomografii emisyjnej (PET). To kosztowne badania i, co najważniejsze, wiążą się z przyjęciem dawki promieniowania. Nikt nie chce wystawiać zdrowych ludzi na promieniowanie, wyjaśnia główny autor badań Tobias Becher.
      To właśnie Becher wpadł na pomysł, jak zidentyfikować ludzi posiadających brunatną tkankę tłuszczową. W pobliżu jego laboratorium znajduje się Memorial Sloan Kettering Cancer Center. Każdego roku tysiące ludzi jest tam diagnozowanych za pomocą PET pod kątem podejrzenia nowotworu. Becher wiedział, że gdy radiolodzy zauważą u badanej osoby brunatną tkankę tłuszczową, rutynowo oznaczają ten fakt, by nie pomylić jej z guzem. "Zdaliśmy sobie sprawę z tego, że tam mogą znajdować się dane pozwalające na badania nad brunatną tkanką tłuszczową na skalę całej populacji", mówi uczony.
      Becher we współpracy z Heiko Schoderem i Andreasem Wibmerem z Memorial Sloan Kettering przejrzeli 130 000 obrazów PET należących do ponad 52 000 pacjentów. U niemal 10% zauważono brunatną tkankę tłuszczową. Profesor Cohen mówi, że to zapewne zaniżona liczba, gdyż pacjentom przed badaniem mówiono, by unikanli zimna, ćwiczenia i kofeiny, a czynniki te prawdopodobnie zwiększają aktywność tkanki, zatem u części pacjentów mogła być ona w chwili badania niewidoczna.
      Gdy naukowcy przeanalizowali dane dotycząc osób posiadających i nieposiadających brunatnej tkanki tłuszczowej okazało się, że ci, u których znajdowały się wykrywalne poziomy tej tkanki, występowało widocznie mniejsze ryzyko wystąpienia różnych chorób. Na przykład na cukrzycę cierpiało tylko 4,6% osób posiadających brunatną tkankę tłuszczową, podczas gdy u osób, u których jej nie wykryto odsetek zachorowań był ponaddwukrotnie wyższy i wynosił 9,5%. Nieprawidłowy poziom cholesterolu we krwi miało 18,9% posiadaczy brunatnej tkanki tłuszczowej oraz 22,2% osób jej nieposiadających.
      Uczeni zaobserwowali też – czego nie zauważono w żadnych wcześniejszych badaniach – że osoby z brunatną tkanką tłuszczową rzadziej chorują na nadciśnienie, niewydolność serca oraz chorobę niedokrwienną serca. Innym niespodziewanym odkryciem było spostrzeżenie, że tkanka tłuszczowa może chronić przed schorzeniami powodowanymi otyłością. Ogólnie rzecz biorąc osoby otyłe są narażone na większe ryzyko rozwoju chorób serca i chorób metabolicznych. Jednak badania wykazały, że u otyłych posiadających brunatną tkankę tłuszczową ryzyko tych chorób jest podobne jak u osób o prawidłowej masie ciała. To tak, jakby były one chronione przed negatywnymi skutkami nadmiaru białej tkanki tłuszczowej, mówi Cohen.
      Obecnie naukowcy nie wiedzą, jaki jest dokładny mechanizm dobroczynnego wpływu brunatnej tkanki tłuszczowej. Istnieją jednak pewne wskazów. Wiemy na przykład, że komórki brunatnej tkanki tłuszczowej zużywają glukozę. Być może obniżają w ten sposób poziom glukozy we krwi, której nadmiar jest jednym z głównych powodów rozwoju cukrzycy.
      Jednak mniej zrozumiały jest wpływ brunatnej tkanki tłuszczowej na nadciśnienie. Być może brunatna tkanka tłuszczowa robi coś więcej niż tylko zużywa glukozę i spala kalorię. Może ma swój udział w działaniu hormonów, zastanawia się Cohen.
      Naukowcy z Rockefeller University chcą bliżej przyjrzeć się brunatnej tkance tłuszczowej. Mają m.in. zamiar poszukać genetycznych przyczyn, dla których jedni ludzie mają jej więcej niż inni. To zaś może być pierwszym krokiem w opracowaniu leków stymulujących aktywność brunatnej tkanki tłuszczowej w leczeniu otyłości i innych chorób.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komórki tłuszczowe (adipocyty) mogą wyczuwać światło słoneczne. Jeśli jest za mało światła o konkretnej długości fali, rośnie ryzyko zespołu metabolicznego. Ponieważ spędzamy sporą część doby w pomieszczeniach, naukowców bardzo to niepokoi.
      Przez bardzo długi czas ludzkie ciała ewoluowały w kontakcie ze światłem słonecznym. Rozwinęły się u nas nawet światłoczułe opsyny. Obecnie jednak spędzamy sporą część doby w warunkach sztucznego oświetlenia, co nie zapewnia nam pełnego spektrum światła, jakie uzyskiwalibyśmy ze słońca - opowiada dr Richard Lang z Centrum Medycznego Szpitala Dziecięcego w Cincinnati.
      Lang dodaje, że idea penetracji światła głęboko do tkanek jest bardzo nowa, nawet dla wielu naukowców. Ja i inni odkryliśmy jednak opsyny zlokalizowane w wielu typach tkanek.
      W ramach ostatnich badań naukowcy wystawiali myszy na oddziaływanie niskiej temperatury (ok. 4°C). Wiedzieli, że by się ogrzać, tak jak ludzie gryzonie będą mieć dreszcze i wykorzystają termogenezę bezdrżeniową, czyli proces wytwarzania ciepła w brunatnej tkance tłuszczowej (ang. brown adipose tissue, BAT).
      Pogłębiona analiza wykazała, że proces rozgrzewania jest zaburzony zarówno pod nieobecność genu OPN3 (opsyny-3), jak i niebieskiego światła o długości fali rzędu 480 nanometrów; światło o tej długości stanowi część światła słonecznego, ale w świetle sztucznym występuje tylko w niewielkiej ilości.
      Podczas ekspozycji na światło, OPN3 stymuluje komórki białej tkanki tłuszczowej (ang. white adipose tissue, WAT) do lipolizy i uwalniania kwasów tłuszczowych do krwiobiegu. Są one wykorzystywane przez różne komórki do zasilania swojej aktywności. BAT spala je w procesie oksydacji, by wygenerować ciepło.
      Gdy wyhodowano myszy pozbawione genu OPN3, po umieszczeniu w niskiej temperaturze nie były one w stanie ogrzać się tak skutecznie, jak inne gryzonie. Co jednak zaskakujące, zespół zauważył, że nawet gdy zwierzęta miały prawidłowy gen, nie rozgrzewały się, gdy wystawiano je na oddziaływanie światła pozbawionego niebieskiego spektrum.
      Uzyskane dane skłoniły naukowców do wyciągnięcia wniosku, że światło słoneczne jest niezbędne dla normalnego metabolizmu energii, przynajmniej u myszy. Choć Amerykanie podejrzewają, że podobny światłozależny szlak metaboliczny występuje u ludzi, by to potwierdzić, muszą przeprowadzić serię kolejnych eksperymentów.
      Jeśli adipocytowy szlak światło-OPN3 istnieje także u ludzi, ma to potencjalnie olbrzymie implikacje dla ludzkiego zdrowia. Współczesny tryb życia wystawia nas na oddziaływanie nienaturalnych spektrów światła. Oznacza również ekspozycję na światło nocą, pracę zmianową i zespół nagłej zmiany strefy czasowej, jet-leg; wszystkie z nich mogą skutkować zaburzeniami metabolicznymi. [...] Niewykluczone, że niewystarczająca stymulacja szlaku światło-OPN3 z komórek tłuszczowych stanowi częściowe wytłumaczenie zaburzeń metabolicznych w krajach uprzemysłowionych, gdzie nienaturalne oświetlenie stało się normą.
      Lang podkreśla, że jeśli jego podejrzenia się potwierdzą, być może w przyszłości światłoterapia stanie się metodą, za pomocą której będzie się zapobiegać przekształceniu zespołu metabolicznego w cukrzycę. Stan zdrowia publicznego będzie zaś można poprawić, zastępując zwykłe oświetlenie wewnętrzne systemami oświetlania pełnym spektrum.
      Najpierw jednak trzeba odpowiedzieć na szereg pytań, m.in. ile światła słonecznego potrzeba, by wesprzeć zdrowy metabolizm i czy ludziom zmagającym się z otyłością może brakować w adipocytach działającego genu OPN3.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Podczas długiej ewolucji nasze organizmy rozwinęły doskonałe metody tworzenia zapasów energii na lata chude. We współczesnym świecie, gdzie wielu ludzi ma stały dostęp do wysokokalorycznych produktów, wpadamy jednak w ich pułapkę i stajemy się otyli. Analizując mechanizmy molekularne leżące u podłoża otyłości, naukowcy z Uniwersytetu Kopenhaskiego odkryli, że jeśli z tkanki tłuszczowej myszy usunie się genetycznie enzym NAMPT, nawet na bardzo tłustej diecie gryzonie stają się całkowicie oporne na rozwój nadwagi czy otyłości.
      Podawaliśmy myszom karmę, która z grubsza stanowi odpowiednik nieustannego jedzenia burgerów i pizzy. Zwierzętom nie udawało się jednak rozbudować tkanki tłuszczowej - opowiada doktorantka Karen Nørgaard Nielsen. Wg niej, ustalenie, jak rozwija się otyłość, pozwoli opracować nowe metody leczenia chorób metabolicznych.
      Duńczycy podkreślają, że uzyskane wyniki pasują do rezultatów badań na ludziach. Kilka studiów zademonstrowało bowiem, że duże ilości NAMPT we krwi i tkance żołądka znacząco korelują z nadwagą bądź otyłością.
      Badanie opisane na łamach Molecular Metabolism jako pierwsze pokazuje, że NAMPT jest niezbędny do stania się otyłym i że brak tego enzymu w tkance tłuszczowej w pełni zabezpiecza przed nadmierną wagą.
      Ekipa z Uniwersytetu w Kopenhadze porównywała, jak zwykłe myszy i gryzonie pozbawione NAMPT reagują na wysokotłuszczową i zdrowszą karmę. Okazało się, że przy paszy zawierającej mniej tłuszczu między grupami myszy nie było większych różnic. Przy paszy wysokotłuszczowej myszy kontrolne stawały się jednak bardzo otyłe, a zwierzęta z brakującym NAMPT nie tyły bardziej niż na zdrowej diecie. Oprócz tego myszy poddane delecji NAMPT zachowywały na niezdrowej karmie lepszą kontrolę poziomu cukru we krwi.
      Duńczycy podkreślają, że uzyskane wyniki zadają kłam popularnemu poglądowi, że w celach terapeutycznych powinno się podwyższać poziom NAMPT. NAMPT wydaje się zwiększać funkcjonalność metaboliczną niemal każdej badanej pod tym kątem tkanki. Istnieją np. wskazówki, że wątroba i mięśnie szkieletowe mogą odnieść korzyści ze zwiększonej aktywność NAMPT. My także stwierdziliśmy, że enzym ten jest krytyczny dla funkcji tkanki tłuszczowej. Niestety, funkcja ta polega na skutecznym magazynowaniu tłuszczu. NAMPT w tkance tłuszczowej był zapewne świetnym wynalazkiem dla naszych przodków, ale w dzisiejszym społeczeństwie, gdzie wielu ma nieograniczony dostęp do wysokokalorycznych pokarmów, może się on stać poważnym obciążeniem - zaznacza prof. Zachary Gerhart-Hines.
      Gerhart-Hines nie uznaje obniżania poziomu NAMPT za użyteczną strategię leczenia ludzi (ryzyko niekorzystnych skutków dla innych tkanek jest bowiem za duże). Wg niego, opisywane studium toruje jednak drogę kolejnym badaniom, które rozstrzygną, jak NAMPT oddziałuje na magazynowanie tłuszczu z jedzenia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      HIF-1 - czynnik indukowany przez hipoksję - był dotąd znany jako jedno z najważniejszych białek odpowiedzialnych za odpowiedź komórki na brak tlenu. Najnowsze badania zespołu z Politechniki Federalnej w Zurychu pokazują, że HIF-1 hamuje także spalanie tłuszczu, co sprzyja otyłości.
      Szwajcarzy wykazali, że HIF-1 jest aktywny w adipocytach białej tkanki tłuszczowej. To sprawia, że tłuszcz nie znika nawet po zmianie diety. Wysokie stężenia czynnika indukowanego przez hipoksję występują u pacjentów z masywną otyłością. Na szczęście proces jest odwracalny.
      HIF-1 zawsze pojawia się, gdy tkanka znacznie powiększa się w krótkim czasie i staje się przez to niedotleniona. Odnosi się to zarówno do tkanki nowotworowej, jak i tłuszczu brzusznego. Mechanizm HIF-1 występuje u wszystkich kręgowców i we wszystkich typach komórek. Indukując wytwarzanie wielu cytokin, m.in. VEGF (czynnika wzrostu śródbłonka naczyniowego), pozwala komórce przetrwać w warunkach hipoksji. Ponieważ mitochondria uzyskują energię w czasie utleniania, komórki przestawiają się na glikolizę.
      Zespół Wilhelma Kreka wykazał, że podjednostka α białka HIF-1 jest krytyczna dla podtrzymania otyłości i związanych z nią patologii, w tym nietolerancji glukozy, insulinooporności i kardiomiopatii. HIF-1α wykonuje swe zadanie, hamując beta-oksydację kwasów tłuszczowych w macierzy mitochondriów (w procesie tym powstają równoważniki redukcyjne służące do uzyskania w łańcuchu oddechowym magazynującego energię ATP). Udaje się to m.in. dzięki transkrypcyjnej represji enzymu sirtuiny-2, która przekłada się na obniżoną ekspresję genów beta-oksydacji i mitochondriów.
      Szwajcarzy prowadzili badania na myszach, którym podawano wyłącznie wysokotłuszczową karmę. Gdy zwierzęta w krótkim czasie znacznie przytyły, w ich tkance tłuszczowej wykryto duże stężenia HIF-1. Oznacza to, że wskutek kiepskiego krążenia jej komórkom zaczęło doskwierać niedotlenienie. Gdy HIF-1 "wyłączono", myszy przestały tyć, nawet gdy ich dieta nadal obfitowała w tłuszcze. Kiedy zwierzęta przestawiano na zwykłą karmę, zaczęły chudnąć. Znikał nawet tłuszcz zgromadzony wokół serca. W dodatku nie był on przenoszony na inne narządy.
      W próbkach tkanki tłuszczowej pobranych od otyłych i szczupłych ludzi zaobserwowano ten sam wzorzec. U badanych z nieprawidłową wagą ciała stężenie HIF-1 było wysokie, a SIRT-2 niskie. U osób z prawidłową wagą wykrywano jedynie śladowe ilości HIF-1 (prawdopodobnie dlatego, że warunkach prawidłowego poziomu tlenu - normoksji - produkowany przez komórkę HIF-1α powinien być degradowany przez układ proteosomów).
      Ponieważ HIF-1 nie eliminuje enzymu SIRT-2 całkowicie, jego chemiczna aktywacja u pacjentów z nadwagą/otyłością mogłaby wymusić spalanie kwasów tłuszczowych.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...