Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  

Recommended Posts

Wynaleziony w 1965 roku w laboratoriach DuPonta kevlar jest używany w kamizelkach kulooodpornych, hełmach i trampolinach, wzmacnia się też nim kable światłowodowe oraz umieszcza w obuwiu czy odzieży. Łatwiej więc chyba powiedzieć, gdzie go nie ma niż wyliczyć możliwe zastosowania. Teraz do korzystnych właściwości tych włókien poliamidowych trzeba będzie dołączyć zwalczenie szkodliwych drobnoustrojów: bakterii, wirusów i grzybów (Industrial & Engineering Chemistry Research).

Yuyu Sun i Jie Luo z Uniwersytetu Południowej Dakoty opracowali metodę pokrywania kevlaru substancją zwaną acykliczną N-halaminą. Przetestowano aktywność wynalazku przeciwko E. coli, gronkowcowi złocistemu (Staphylococcus aureus), wirusowi MS2, Candida tropicalis oraz sporom Bacillus subtilis (które miały naśladować wąglika).

Okazało się, że na czystym kevlarze w ciągu krótkiego czasu osiadało dużo mikroorganizmów, a na włóknach powleczonych substancją czynną nie było ich wcale bądź bardzo niewiele. Co ważne, powłoka jest trwała i można ją odnawiać.

Po naniesieniu acyklicznej N-halaminy nie zmieniły się pierwotne właściwości termiczne i mechaniczne kevlaru. W przyszłości należy przeprowadzić dalsze badania nad jego skutecznością biobójczą. Gdy wszystko pójdzie dobrze, tego typu tkaniny znajdą na pewno zastosowanie w wielu dziedzinach życia i nauki.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Płynne perły to spełnienie marzeń pewnego szefa kuchni, przedstawiciela gastronomii molekularnej, który chcąc zamknąć smaki w osobnych przedziałach, poprosił o pomoc fizyków. Odpowiadając na jego zapotrzebowanie, naukowcy stworzyli pokryte elastyczną błoną hydrożelową kapsułki z płynnym rdzeniem. Co ważne, pomysł ten przyda się nie tylko w kuchni, ale i podczas leczenia nowotworów.
      Nicholas Bremond i jego zespół z ESPCI ParisTech porównują swoje dzieło do rybiej ikry. Na początku kroplę cieczy powleka się cienką warstwą kwasu alginowego (wchodzi on w skład ścian komórkowych wielu alg i trawy morskiej), która ulega zżelowaniu po zanurzeniu w kąpieli z roztworu chlorku wapnia z dodatkiem detergentu.
      Błonka jest bardzo cienka - jej grubość mierzy się w mikrometrach. Francuzi podkreślają, że by powstał film, przed zżelowaniem należy wyeliminować mieszanie. Bez detergentu powłoka także miałaby postać żelu, ale szybko zlałaby się z zawartością kapsułki. Substancja powierzchniowo czynna prowadzi do czasowego utwardzenia, które ogranicza niestabilność związaną ze ścinaniem podczas zderzenia.
      Bremond i inni uważają, że w hydrożelowej powłoce da się zamknąć dowolną ciecz. Dzięki temu prostemu zabiegowi można by badać wzrost i zdolność przeżycia mikroorganizmów czy komórek nowotworowych w różnych trójwymiarowych środowiskach. Ponieważ błona jest przepuszczalna, do wnętrza dostarczano by np. leki.
    • By KopalniaWiedzy.pl
      W Lawrence Berkeley National Laboratory stworzono półprzewodnikowy nanokryształ, który może kontrolować ilość przepuszczanego ciepła słonecznego i jest przy tym przezroczysty. Przełomowa technologia, która znajdzie zastosowanie w budynkach, jest pierwszą, która umożliwia selektywną kontrolę promieniowania w bliskiej podczerwieni.
      Wyprodukowanie przezroczystego materiału elektrochromatycznego, który pozwala na zmianę przepuszczalności w podczerwieni to bezprecedensowe osiągnięcie - mówi Delia Milliron, która kierowała zespołem naukowym. Dodatkową zaletą jest fakt, że do zmiany zabarwienia materiału wymagana jest znacznie mniejsza ilość energii niż w podobnych tego typu rozwiązaniach.
      Odpowiednie dynamiczne pokrycie dla okien w budynku może oznaczać kolosalne oszczędności w eksploatacji. O tym, ile energii jest zużywane przez budynki niech świadczy fakt, że jej wykorzystanie przyczynia się do ponad 40% amerykańskiej emisji związkow węgla. Tymczasem, jak wynika z badań National Renewable Energy Laboratory, odpowiednie pokrycia dla okien mogą pozwolić na obniżenie kosztów klimatyzacji o 49%, a kosztów oświetlenia o 51%.
      Tradycyjne okna elektrochromowe nie potrafią selektywnie kontrolować ilości światła widzialnego i w bliskiej podczerwieni. Pozwalają one albo blokować obie częstotliwości albo obie przepuszczać. Nasze prace to przełom, gdyż dzięki nim możemy wybrać, które częstotliwości chcemy przepuszczać i w ten sposób decydować o temperaturze wewnątrz budynku - mówi Guillermo Garcia, jeden z badaczy.
      Do wyprodukowania nowego pokrycia wykorzystano tlenek indowo-cynowy, używany standardowo podczas produkcji telewizorów.
    • By KopalniaWiedzy.pl
      Pokrycie implantów stawów kolanowych rodnikami sprawia, że są one przez organizm postrzegane jako ciała w mniejszym stopniu obce. Zmniejsza to ryzyko odrzucenia protez przez organizm.
      Prof. Marcela Bilek z Uniwersytetu w Sydney sądzi, że wolne rodniki tworzą wokół powierzchni implantu coś w rodzaju czapki niewidki.
      Australijczycy wyjaśniają, że implanty stawów kolanowych czy biodrowych, stenty itp. z definicji wymagają kontaktu struktur biologicznych z metalem czy plastikiem. Kiedy jednak białka stykają się ze sztucznymi powierzchniami, ulegają denaturacji i zatracają swoją konformację przestrzenną, która jest im niezbędna do prawidłowego funkcjonowania. Organizm próbuje je naprawiać, a gdy się to nie udaje, wskutek nadmiernego włóknienia implant zostaje otoczony grubą warstwą tkanki bliznowatej.
      Naukowcy z antypodów wyszli z założenia, że potrzebne są silnie wiążące (się) powierzchnie, które nie wywołują denaturacji kompatybilnego białka. Tradycyjne powierzchnie hydrofilne spełniają jeden z tych warunków - nie prowadzą do denaturacji unieruchomionych protein - ale niestety, wykazują do nich niskie powinowactwo. Po przejrzeniu literatury przedmiotu i wygenerowaniu własnych hipotez zespół Bilek przetestował więc metodę wykorzystującą naczynie z plazmą i strumienie jonów. Dzięki niej uzyskano powierzchnię hydrofilną, zdolną do wiązania kowalencyjnego z czynnymi biologicznie cząsteczkami. Podczas eksperymentów okazało się bowiem, że siły elektrostatyczne powodują, iż jony w plazmie uderzają w powierzchnię materiału, np. metalu, i zaczynają go penetrować, prowadząc do powstania rodników z niesparowanymi elektronami. Po wyjęciu powierzchni z plazmy rodniki migrują na powierzchnię, gdzie reagują z tlenem z powietrza. Wskutek tego materiał staje się hydrofilny i przyciąga białka, które są normalnie złożone w taki sposób, że część wykazująca powinowactwo do wody znajduje się na zewnątrz. Z czasem coraz więcej rodników migruje na powierzchnię, dzięki czemu między nimi a białkami mogą powstać wiązania kowalencyjne.
      Australijczycy udowodnili, że czas utworzenia monowarstwy kowalencyjnie związanych białek zależy od kinetyki, a także liczby cząsteczek protein w roztworze oraz wolnych rodników w rezerwuarze pod powierzchnią badanego materiału. Jako że magazyn rodników można wytworzyć w każdym ciele stałym, metoda zespołu Bilek sprawdzi się w odniesieniu do różnego rodzaju urządzeń biomedycznych, od stentów po płucoserca. Warto też wspomnieć o ich potencjale w zakresie wykrywania patogenów. W tego rodzaju czujnikach rodniki zapobiegałyby odkształceniu białek stosowanych do detekcji szkodliwych bakterii czy wirusów. Powłoka zostanie też zapewne wdrożona w mikromacierzach ułatwiających leczenie wczesnych etapów chorób.
      Bilek tłumaczy, że jako część powłoki wolne rodniki pozostają związane i nie mogą poczynić szkód w DNA komórek. Obecnie trwają prace nad białkami do tworzonych powłok, które "zachęcałyby" tkanki do integrowania ze sztucznymi powierzchniami.
    • By KopalniaWiedzy.pl
      Utrata powłoki białkowej plemników tłumaczy znaczny odsetek przypadków męskiej niepłodności – donoszą naukowcy z Uniwersytetu Kalifornijskiego w Davis. W artykule opublikowanym na łamach pisma Science Translational Medicine białko DEFB126 jest porównywane do czapki niewidki, ukrywającej plemniki przed kobiecym układem odpornościowym.
      Zespół prof. Gary'ego Cherra odkrył, że u wielu mężczyzn występuje wadliwy gen białka DEFB126. Badanie próbek z USA, Wielkiej Brytanii i Chin ujawniło, że aż ¼ panów z całego świata ma 2 kopie zmutowanego genu, co może w znacznym stopniu upośledzić ich płodność.
      Jedną z tajemnic ludzkiej płodności jest fakt, że jakość i liczba plemników wydają się mieć niewiele wspólnego z tym, czy mężczyzna jest płodny, czy nie – podkreśla główny autor raportu Ted Tollner. Cherr dodaje, że u 70% mężczyzn nie można przewidzieć płodności na podstawie zliczania plemników i rutynowej oceny ich jakości. Studium Amerykanów rzuca jednak nieco światła na mechanizmy, które wchodzą w grę w tych przypadkach. Urolog John Gould ma nadzieję, że odkrycia zespołu uda się przełożyć na test, którego wyniki byłyby podstawą do skierowania par na docytoplazmatyczną mikroiniekcję plemnika (ang. intracytoplasmic sperm injection, ICSI).
      DEFB126 należy do grupy białek zwanych defensynami. Chronią one błony śluzowe i występują w komórkach żernych kręgowców, aktywnych wobec grzybów, bakterii i wirusów osłonkowych. DEFB126 powstaje w najądrzach, których zadanie polega na odprowadzaniu z jądra i magazynowaniu nasienia. Tam odbywa się powlekanie plemników grubą warstwą proteiny.
      Ponieważ Tollner i Cherr pracowali nad szczepionką antykoncepcyjną, próbowali uzyskać przeciwciała przeciw DEFB126, ale im się nie udało. Poprosili więc o pomoc Charlesa Bevinsa, który w celu uzyskania oczyszczonego białka przeprowadził rekombinację. Przy pierwszej próbie okazało się, że gen DEFB126 był zmutowany, przez co nie mogło dojść do ekspresji białka. Kiedy naukowcy wykorzystali plemniki od innego dawcy, byli w stanie uzyskać prawidłowe białko.
      Plemniki od mężczyzn z wadliwym genem DEFB126 są ruchliwe i wyglądają normalnie pod mikroskopem, jednak o wiele gorzej radzą sobie z pokonaniem bariery sztucznego żelu, przypominającego śluz szyjki macicy. Gdy do spermy doda się normalnego białka, odzyskuje ona swoje zwykłe zdolności.
      Dzięki współpracy z Edwardem Holloksem z University of Leicester, Xipingiem Xu z University of Illinois oraz Scottem Vennersem z kanadyjskiego Uniwersytetu Simona Frasera naukowcy byli w stanie ustalić, jak często wadliwa kopia genu osłonki plemników występuje w USA, Wielkiej Brytanii, Chinach, Japonii i Afryce. Odnosząc te dane do świata, wyliczyli, że ok. ½ mężczyzn to nosiciele jednej wadliwej kopii, a ¼ ma aż dwie zmutowane kopie genu DEFB126, co znacznie utrudnia plemnikom pokonanie etapu szyjki macicy.
      Czemu mutacja wpływająca na płodność jest tak powszechna? Być może dlatego, że heterozygoty (mężczyźni z jedną prawidłową i jedną zmutowaną wersją genu) są w jakiś sposób uprzywilejowani biologicznie. Tollner przypomina, że w porównaniu do plemników małp i innych ssaków, plemniki ludzkie mają przeważnie kiepską jakość, wolno pływają, a w sporej części występują jakieś wady. Niewykluczone, że dzieje się tak, ponieważ ludzie pozostają w długoterminowych związkach monogamicznych, stąd jakość spermy nie liczy się aż tak bardzo. Część badaczy uważa jednak, że ostatnimi czasy z nieznanych powodów jakość ludzkiej spermy systematycznie się pogarsza, ujawniając problemy związane z defektami genu DEFB126.
    • By KopalniaWiedzy.pl
      Naukowcy z niemieckiego Biomimetics-Innovation-Centre (B-I-C) na Uniwersytecie Nauk Stosowanych w Bremie opracowali zapobiegającą porastaniu powłokę kadłuba statków, zainspirowaną budową unoszących się na wodzie nasion palmy Dypsis rivularis. D. rivularis należy do rodziny arekowatych. Występuje wyłącznie na Madagaskarze. Z powodu utraty habitatów gatunkowi zagraża wyginięcie.
      Te palmy mają nasiona roznoszone przez prądy morskie. Jako że dla nasion korzystne jest niedopuszczanie do porastania, ponieważ pozwala im to przebyć dłuższą drogę, założyliśmy, że dysponują specjalnymi powierzchniami, które moglibyśmy odtworzyć – tłumaczy dr Katrin Mühlenbruch.
      Przez 3 miesiące Niemcy spławiali na Morzu Północnym nasiona 50 gatunków. Okazało się, że w przypadku 12 nie odnotowano żadnego porastania. Potem zaczęliśmy badać mikrostrukturę powierzchni tych nasion […]. Ostatecznie zdecydowaliśmy się naśladować nasiona, które miały włoskopodobną budowę. Taka struktura może być szczególnie skuteczna przy zapobieganiu porastaniu, ponieważ włókna stale się ruszają, utrudniając organizmom morskim znalezienie miejsca do osiedlenia.
      Zespół Mühlenbruch wykorzystał silikonową bazę, na której utworzono powierzchnię z włóknami. Obecnie nowa powierzchnia przechodzi testy na morzu. Wyniki są zachęcające.
      Rozwiązanie naśladujące naturę na pewno spodoba się ekologom i aramatorom. Ci pierwsi ucieszą się z wyeliminowania toksycznych farb, które zabijając potencjalnych mieszkańców kadłuba, nie dopuszczały do jego porastania. Drugich powinny zadowolić wymierne korzyści w postaci oszczędzonego paliwa.
×
×
  • Create New...