Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Modele klimatyczne swoje, a Ocean Południowy swoje. Wiemy, skąd ta rozbieżność

Rekomendowane odpowiedzi

Światowe oceany pochłaniają około 25% antropogenicznej emisji dwutlenku węgla, z czego sam Ocean Południowy pochłania aż 40% – czyli nawet 4 miliardy ton – co czyni go najważniejszym regionem spowalniającym globalne ocieplanie. Modele klimatyczne przewidują, że zmiana klimatu powinna spowodować zmniejszenie zdolności Oceanu Południowego do pochłaniania węgla z atmosfery. Jednak dane obserwacyjne temu przeczą. W ostatnich dekadach takie zjawisko nie zaszło. Léa Olivier i F. Alexander Haumann z Instytutu Alfreda Wegenera wyjaśnili na łamach Nature Climate Change, dlaczego nie zachodzą zjawiska przewidziane przez modele.

Rola, jaką odgrywa Ocean Południowy w spowalnianiu ocieplenia klimatu jest ściśle związana z cyrkulacją oceaniczną w regionie. Zależy od tego, jak wiele wody z głębin wynurzy się na powierzchnię i ponownie zanurzy. W trakcie tego procesu dochodzi do uwolnienia CO2 z wód oceanicznych, pochłonięcia CO2 i jego transportu w głębokie partie oceanu. To, ile dwutlenku węgla pochłonie Ocean Południowy zależy od tego, ile tego gazu wydostanie się wraz z wodą z głębin oceanicznych. Im więcej przetransportuje woda z głębi, tym mniej pochłoną wody powierzchniowe.

Woda wydobywająca się z oceanicznych głębin jest bardzo stara. Nie było jej na powierzchni od setek i tysięcy lat. Przez ten czas akumulowała ona naturalny dwutlenek węgla. Gdy powraca na powierzchnię, uwalnia go do atmosfery. Jednocześnie takie powracające wody zmniejszają zdolność wód powierzchniowych do absorbowania CO2. Modele klimatyczne mówią, że coraz silniejsze wiatry zachodnie, które zyskują na sile z powodu globalnego ocieplenia, będą powodowały, że coraz więcej wody z głębin będzie wydobywało się na powierzchnię. W dłuższym terminie powinno to zmniejszyć zdolność Oceanu Południowego do absorbowania CO2 z atmosfery. Jednak, wbrew modelom, w ostatnich dekadach nie odnotowano, by Ocean Południowy pochłaniał mniej dwutlenku węgla niż wcześniej. Pomimo tego, że siła wiatrów zachodnich rzeczywiście wzrosła.

Głębokie wody oceaniczne na Oceanie Południowym znajdują się poniżej 200 metrów pod powierzchnią. Są bardziej słone, bogatsze w składniki odżywcze i cieplejsze od wód powierzchniowych. Zawierają też dużą ilość CO2, który jest przechowywany w głębokich partiach oceanu od bardzo dawna, pochodzi sprzed epoki przemysłowej. Z kolei wody powierzchniowe są mniej słone, chłodniejsze i zawierają mniej dwutlenku węgla. Dzięki różnicy w gęstości obu warstw wody z głębi nie mogą łatwo wydostać się na powierzchnię.

Na potrzeby badań uczeni wykorzystali dane biogeochemiczne dotyczące właściwości wód Oceanu Południowego, zebrane przez liczne ekspedycje naukowe w latach 1972–2021. Przyjrzeli się długoterminowym anomaliom, zmianom we wzorcach cyrkulacji i właściwościach wody. Brali przy tym pod uwagę wyłącznie te procesy, które powiązane są z mieszaniem się obu warstw wody, a nie – na przykład – procesy biologiczne.

Zauważyli, że od lat 90. XX wieku różnica pomiędzy obiema masami wody się zwiększyła. Wody powierzchniowe stały się mniej słone w wyniku napływu do Oceanu Południowego olbrzymiej ilości słodkiej wody z roztapiających się lodowców, lodu morskiego i zwiększonych opadów. Ta zwiększona różnica we właściwościach obu warstw powoduje, że wody powierzchniowe stanowią jeszcze trudniejszą do pokonania barierę dla wód z głębin. To jednak nie wszystko.

„Odświeżone” przez słodką wodę wody powierzchniowe spowodowały, że nie doszło do osłabienia zdolności Oceanu Południowego do pochłaniania CO2. Sytuacja może jednak ulec zmianie, gdy różnica pomiędzy obiema warstwami wody stanie się mniejsza. Okazuje się, że takie ryzyko istnieje. Z badań Olivier i Haumanna wynika bowiem, że od lat 90. górna granica głębokich warstw wody przybliżyła się do powierzchni o 40 metrów. A im bliżej powierzchni się znajdzie, tym bardziej obie warstwy wody będą podatne na mieszanie przez coraz silniejsze wiatry zachodnie.

Nie można zresztą wykluczyć, że proces ten już się rozpoczął, na co wskazują wyniki badań opublikowane przed 4 miesiącami w PNAS. Jeśli tak, to w najbliższych latach możemy być świadkami procesu utraty przez Ocean Południowy części zdolności do pochłaniania dwutlenku węgla. Potrzebujemy więcej danych, by stwierdzić, czy rzeczywiście dochodzi do uwalniania większej ilości CO2 z głębokich partii oceanu. Szczególnie przydatne będą dane z miesięcy zimowych, gdy ma miejsce mieszanie się wód, mówi profesor Haumann i przypomina, że Instytut Wegenera będzie prowadził tego typu badania w ramach międzynarodowego programu Antarctica InSync, którego celem jest koordynacja badań w Antarktyce i na Oceanie Południowym.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Światowa Organizacja Meteorologiczna (WMO) opublikowała raport na temat gazów cieplarnianych w atmosferze w roku 2024. Nie napawa on optymizmem. Raport rozpoczyna się słowami: poziomy trzech najpowszechniej występujących długotrwałych gazów cieplarnianych, dwutlenku węgla, metanu i tlenku azotu pobiły w 2024 roku rekordy. Pomiędzy rokiem 2023 a 2024 poziom CO2 w niskich warstwach atmosfery zwiększył się o 3,5 ppm, to największy wzrost rok do roku od czasu rozpoczęcia regularnych pomiarów w 1957 roku. Wzrost ten był napędzany emisją CO2 ze źródeł kopalnych, zwiększoną emisją z pożarów oraz zmniejszonym pochłanianiem przez lądy i oceany, co może wskazywać na działanie sprzężenia zwrotnego.
      W 2024 roku średnie stężenie CO2 przy powierzchni Ziemi osiągnęło 423,9 ppm. Warto zwrócić uwagę na przyspieszenie tempa wzrostu. W latach 60. XX wieku stężenie dwutlenku węgla wzrastało średnio o 0,8 ppm/rok, natomiast w dekadzie 2011–2020 było to średnio 2,4 ppm/rok. W ciągu ostatnich 10 lat (2014–2024) średnia wyniosła 2,57 ppm.
      Ubiegłoroczny wzrost o 3,5 ppm był rekordowy, wyższy niż dotychczasowy rekord 3,3 ppm z 2016 roku i znacznie wyższy niż 2,4 ppm z roku 2023. Co więcej, ten duży wzrost miał miejsce pomimo tego, że antropogeniczna emisja CO2 w roku 2024 utrzymała się praktycznie na tym samym poziomie co w roku 2023.
      Od 1960 roku ludzkość wyemitowała do atmosfery około 500 miliardów ton węgla. Z tego około połowa została pochłonięta przez oceany i lądy. Problem jednak w tym, nie nie możemy bez końca liczyć na te źródła pochłaniania węgla. Wraz ze wzrostem temperatury oceany są w stanie pochłonąć coraz mniej CO2, gdyż gaz ten gorzej rozpuszcza się w wodzie o wyższej temperaturze. Wyższe temperatury oznaczają też pojawianie się okresów ekstremalnych susz. Z jednej strony oznacza to częstsze pożary, w wyniku których dochodzi do emisji węgla do atmosfery i zmniejszania pokrywy roślinnej, z drugiej zaś, stres wywołany temperaturami i niedoborami wody również może spowodować zmniejszone pochłanianie węgla przez roślinność. Za przykład niech posłużą niedawne badania australijskich uczonych, którzy zauważyli, że w pierwszej dekadzie obecnego wieku doszło do radykalnej zmiany, w wyniku której wilgotne lasy tropikalne Australii stały się emitentem netto węgla.
      Z raportu WMO dowiadujemy się, że w rekordowym ubiegłym roku wzrostu stężenia CO2 w atmosferze ekosystemy lądowe i oceany są prawdopodobnie odpowiedzialne za 1,1 ppm tego wzrostu. Średnia globalna temperatura była najwyższa od 1850 roku i po raz pierwszy była o 1,5 stopnia wyższa niż w epoce przedprzemysłowej. Było to spowodowane zarówno długoterminowym ociepleniem klimatu, jak i pojawieniem się zjawiska El Niño. W wyniku połączenia obu czynników doszło do zmian w rozkładzie regionalnych temperatur i opadów, co wpłynęło na wchłanianie i uwalnianie CO2 przez rośliny oraz liczbę i wielkość pożarów. Cieplejsze oceany wyemitowały też więcej węgla niż zwykle. Jednak główną przyczyną anomalii zarejestrowanej w roku 2024 był zmniejszenie wchłaniania netto węgla przez ekosystemy oraz zwiększenie emisji z pożarów, stwierdzają autorzy raportu.
      Naukowcy obawiają się, że ekosystemy morskie i lądowe coraz mniej efektywnie pochłaniają dwutlenek węgla, zatem coraz większa część antropogenicznej emisji pozostaje w atmosferze, przyspieszając globalne ocieplenie.
      Usuwanie antropogenicznego CO2 z atmosfery jest uzależnione od wymiany pomiędzy miejscami jego wchłaniania. Wymiana ta trwa w skalach od lat (pochłanianie przez wody powierzchniowe oceanów), po setki tysięcy lat (wietrzenie skał). Spowolnienie wchłaniania CO2 jest dodatkowo potęgowane przez powolne pochłanianie energii cieplnej przez głębiny oceaniczne. W wyniku tego raz wyemitowany dwutlenek węgla pozostaje w atmosferze praktycznie bez końca. Inaczej jest w przypadku metanu, którego czas istnienia w atmosferze wynosi około 9 lat. Gaz ten jest usuwany w wyniku utleniania, czytamy w dokumencie.
      W epoce przedprzemysłowej w atmosferze utrzymywała się równowaga pomiędzy emisją a pochłanianiem i poziom dwutlenku węgla wynosił 278,3 ppm. Obecnie przekroczył 420 ppm, co oznacza wzrost o ponad 50%.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niemieccy badacze znaleźli nowe źródło informacji o stężeniu dwutlenku węgla w atmosferze przed milionami lat. Okazało się, że zapis na ten temat znajduje się w... skamieniałych zębach dinozaurów. Uczeni z Uniwersytetów w Moguncji, Göttingen i Bochum, na podstawie analizy izotopów tlenu w szkliwie zębów dinozaurów stwierdzili, że stężenie CO2 w atmosferze w mezozoiku (252–66 milionów lat temu), było znacznie wyższe niż obecnie. Badania były możliwe dzięki wykorzystaniu innowacyjnej metody, która pozwoliła na określenie względnego stosunku wszystkich trzech naturalnych izotopów tlenu.
      Badania wykazały, że produkcja pierwotna – czyli w tym przypadku szybkość gromadzenia energii promieniowania słonecznego, która jest podczas fotosyntezy przekształcana w energię wiązań chemicznych w tkankach roślinnych – była dwukrotnie większa niż obecnie.
      Naukowcy przeanalizowali zęby dinozaurów z Ameryki Północnej, Afryki i Europy pochodzące o czasów od późnej jury po późną kredę. Szkliwo zębowe to jeden z najbardziej stabilnych materiałów biologicznych. Zawiera ono trzy izotopy tlenu, które do organizmu dinozaurów dostawały się w czasie oddychania. Względny stosunek tych izotopów w powietrzu zależy od zmian w poziomie atmosferycznego dwutlenku węgla i intensywności fotosyntezy. To oznacza, że zęby dinozaurów mogą zawierać dane o klimacie i szacie roślinnej.
      Z badań wynika, że pod koniec jury, około 150 milionów lat temu, stężenie CO2 w atmosferze było czterokrotnie większe niż w epoce przedprzemysłowej. W późnej kredzie – 73–66 milionów lat temu – było zaś 3-krotnie wyższe. W czasach przedprzemysłowych stężenie CO2 w atmosferze wynosiło 280 ppm. Obecnie jest ono o ponad 50% wyższe. W 2024 było to 424 ppm. Wartość ta szybko rośnie. Jeszcze w 2017 roku stężenie wynosiło 406 ppm.
      Analizy wykazały też, że w niezwykły stosunek izotopów tlenu w niektórych zębach gatunków Tyrannosaurus rex i Kaatedocus siberi. To najprawdopodobniej dowód na nagłe wzrosty stężenia CO2, spowodowane na przykład potężną aktywnością wulkaniczną, jak ta, która utworzyła trapy Dekanu.
      Uzyskane wyniki to przełom w paleoklimatologii. Dotychczas bowiem w czasie podobnych badań używa się próbek węglanów z gleby i wykorzystuje proxy morskie, czyli niebezpośrednich wskaźników ze środowiska morskiego. Obie te metody obarczone są jednak pewnym marginesem niepewności. Użycie szkliwa zębów dinozaurów to pierwsza metoda badań tego typu opierająca się na kręgowcach lądowych. To całkowicie nowy sposób wglądu w przeszłość Ziemi. Teraz możemy użyć sfosylizowanego szkliwa do badania składu atmosfery oraz produktywności roślin morskich i lądowych. To kluczowe elementy zrozumienia długoterminowej dynamiki klimatu, mówi doktor Dingsu Feng z Wydziału Geochemii i Geologii Izotopowej na Uniwersytecie w Göttingen.
      Informacje o produkcji pierwotnej to ważne dane na temat lądowych i morskich sieci troficznych. Dane takie trudno jest zdobyć, a są one bardzo ważne, gdyż to dostępna biomasa roślinna decyduje o liczbie zwierząt, ich gatunków oraz długości łańcucha pokarmowego, wyjaśnia profesor Eva M. Griebeler z Uniwersytetu w Moguncji.
      Badania zostały omówione na łamach PNAS.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Szwajcarii powstaje „żywy” materiał, który w sposób aktywny pobiera dwutlenek węgla z atmosfery. Wewnątrz materiału znajdują się cyjanobakterie, które wiążą CO2 na dwa różne sposoby. Nad niezwykłym projektem, którego celem jest połączenie konwencjonalnych materiałów z bakteriami, grzybami czy glonami pracują naukowcy z Politechniki Federalnej w Zurychu. Ich celem jest stworzenie materiałów, które dzięki metabolizmowi mikroorganizmów nabierają nowych pożądanych właściwości. Na przykład usuwają dwutlenek węgla z powietrza.
      Zespół pracujący pod kierunkiem profesora Marka Tibbitta z katedry Inżynierii Makromolekularnej stworzył właśnie żel zawierający cyjanobakterie. Można go kształtować za pomocą drukarki 3D. Niezwykłe jest to, że żel – mimo że jest miękki – ma być materiałem budowlanym. A jedyne, czego potrzebuje, by się nim stać, to światło słoneczne i słona woda zawierająca proste do uzyskania składniki odżywcze. Oraz dwutlenek węgla z atmosfery. Jakby tego było mało, materiał absorbuje więcej CO2 niż wiążą zawarte w nim cyjanobakterie. Dzieje się tak, gdyż przechowuje on atmosferyczny węgiel nie tylko w postaci biomasy, ale również w postaci mineralnej.
      Cyjanobakterie to jedne z najstarszych form życia na Ziemi. Przeprowadzają bardzo efektywną fotosyntezę i nie potrzebują wiele światła, by z CO2 i wody wytwarzać biomasę. Jednocześnie, w wyniku przeprowadzanej przez nie fotosyntezy, dochodzi do zmiany środowiska chemicznego wokół komórki i tworzenia się węglanów. Węglany deponowane są wewnątrz żelu, wzmacniają go, a jednocześnie same pochłaniają atmosferyczny dwutlenek węgla, przechowując go w bardziej stabilnej formie niż bakterie. Badania wykazały, że taki żel pochłania węgiel przez 400 dni i przechowuje 26 miligramów CO2 na każdy gram. To znacząco więcej niż wiele innych materiałów.
      Twórcy żelu chcą w przyszłości zbadać, czy sprawdzi się on na przykład jako powłoka, którą można będzie pokrywać i zamieniać je w miejsca pochłaniające dwutlenek węgla z atmosfery.
      Źródło: Dual carbon sequestration with photosynthetic living materials, https://www.nature.com/articles/s41467-025-58761-y

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Unii Europejskiej transport drogowy jest jedynym ważnym sektorem działalności gospodarczej, w którym emisja CO2 wciąż rośnie od 1990 roku. Niewykluczone jednak, że właśnie jesteśmy świadkami zmiany tego trendu. Międzynarodowa Rada Czystego Transportu (International Council on Clean Transportation, ICCT), niedochodowa organizacja doradczo-badawcza, opublikowała nową edycję swojego raportu Vision 2050, w którym analizuje globalne polityki dotyczące czystego transportu oraz rozwoju rynkowego.
      Analizie poddawane są trendy w sprzedaży samochodów, przepisy prawne, rozwiązania polityczne, zużycie energii, analizowane możliwe scenariusze rozwoju wydarzeń do roku 2050. W tegorocznym raporcie szczególnie skupiono się na rozwiązaniach politycznych wprowadzonych w ciągu ostatnich 3 lat. Analitycy ICCT przewidują, że w bieżącym roku emisja z transportu drogowego sięgnie na terenie UE niemal 800 milionów ton dwutlenku węgla i będzie to maksymalna wartość historyczna. Od przyszłego roku emisja z pojazdów będzie spadała i około roku 2035 zmniejszy się o około 25% w porównaniu z rokiem bieżącym.
      Z naszej analizy wynika, że europejski sektor transportowy znajduje się w historycznym punkcie przegięcia. Dekadę po podpisaniu Porozumienia Paryskiego w Europie dochodzi do zmiany i przejścia na pojazdy elektryczne, które są bardziej efektywne energetycznie i charakteryzują się znacznie mniejszą emisją. Jednak nasza analiza zawiera też ostrzeżenie, odejście od obecnych celów redukcji CO i złagodzenie wymagań wobec producentów samochodów może spowodować, że do spadku emisji nie dojdzie, stwierdził Felipe Rodriguez, zastępca dyrektora ICCT na Europę.
      Analitycy ICCT porównali stan prawny obowiązujący w Unii Europejskiej w 2021 roku z przepisami wprowadzonymi w ciągu kolejnych 3 lat. Stwierdzili, że nowe przepisy i standardy emisji dla ciężarówek w znaczący sposób zbliżają kraje UE do osiągnięcia celów Porozumienia Paryskiego. Podobny pozytywny trend widać też w skali globalnej. Być może i w skali całego globu konsumpcja paliw płynnych i emisja z transportu osiągną szczyt w 2025 roku, a później zaczną spadać. Dużo bowiem wskazuje na to, że zmniejszenie emisji z transportu w Chinach, UE i USA będzie większe, niż jej zwiększenie na pozostałych obszarach planety.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...