Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

„Superalkohol” z Hawajów pokazuje, jak złożona jest kosmochemia

Rekomendowane odpowiedzi

Superalkohol stworzony na University of Hawaiʻi pokazuje, że środowisko chemiczne przestrzeni kosmicznej może być znacznie bardziej zróżnicowane, niż sądzimy, i mogą tam zachodzić niespodziewane reakcje chemiczne. Naukowcy z Hawajów uzyskali molekułę, o której do niedawna sądzono, że jest zbyt niestabilna, by mogła istnieć. Tetrahydroksymetan to jedyny alkohol z czterema grupami hydroksylowymi dołączonymi do pojedynczego atomu węgla.

Już alkohole o dwóch grupach hydroksylowych przy pojedynczym atomie C są nietrwałe, gdyż powodują, że atom węgla jest bardzo ubogi w elektrony. Co dopiero, gdybyśmy mieli 4 grupy przy jednym atomie. A jednak udało się właśnie taką strukturę zaobserwować.

Uczeni uzyskali ją w laboratorium w warunkach bliskich próżni, przy bardzo niskiej temperaturze i silnym promieniowaniu. Zatem w warunkach, jakie mogą panować na przykład w przestrzeni kosmicznej w chmurach międzygwiezdnego gazu. Osiągnięcie to pokazuje, że kosmiczna chemia jest znacznie bardziej zróżnicowana niż sądziliśmy i mogą powstawać tam niezwykle zróżnicowane molekuły. Badacze odkryli, że w warunkach próżni i niskich temperatur silne promieniowanie ultrafioletowe wywołuje reakcje, w wyniku którego powstają tak egzotyczne molekuły jak tetrahydroksymetan.

Odkrywanie molekuł i reakcji chemicznych istniejących i zachodzących w ekstremalnych środowiskach jest niezwykle ważne dla badania kosmosu i procesów w nim zachodzących. Pozwala nam lepiej zrozumieć formowanie się obiektów i struktur tworzących wszechświat, przybliża nas też do zrozumienia ewolucji wszechświata oraz powstania i ewolucji życia.

Więcej informacji w artykule Methanetetrol and the final frontier in ortho acids.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Poszukując życia na innych planetach naukowcy skupiają się na wodzie. Jest ona niezbędna dla życia na Ziemi, zatem jej obecność – lub przynajmniej warunki pozwalające na jej obecność – jest uważana za warunek sine qua non możliwości występowania życia na innych planetach. Badacze z MIT, Politechniki Wrocławskiej oraz innych uczelni proponują na łamach PNAS, by za ciała niebieskie zdolne do utrzymania życia uznać też i takie, na których mogą występować ciecze jonowe. A mogą one powstawać w warunkach, w jakich woda w stanie ciekłym nie może istnieć. Jeśli autorzy najnowszych badań mają rację, to liczba potencjalnych miejsc istnienia życia w przestrzeni kosmicznej może być znacznie większa, niż uważamy. Oczywiście nie będzie to takie życie, jakie znamy z Ziemi.
      Ciecze jonowe to substancje chemiczne składające się z jonów. To sole, które pozostają w stanie płynnym w temperaturze poniżej 100 stopni Celsjusza. Ciecze takie mają bardzo niską prężność par, co oznacza, że niemal się nie ulatniają.
      Z badań, w których brał udział doktor Janusz Pętkowski z Wydziału Inżynierii Środowiska Politechniki Wrocławskiej, wynika, że ciecze jonowe mogą z łatwością powstawać ze składników, których obecność jest spodziewana na niektórych planetach i księżycach. Badacze wykazali, że mieszanina kwasu siarkowego i niektórych składników organicznych zawierających azot, prowadzi do utworzenia cieczy jonowej. Kwas siarkowy jest emitowany przez wulkany, a składniki organiczne z azotem wykrywamy na asteroidach czy planetach, więc mogą być szeroko rozpowszechnione.
      Jak już wspomnieliśmy, ciecze jonowe mają niską prężność par, mogą powstawać i pozostawać stabilne przy wyższych temperaturach i niższym ciśnieniu atmosferycznym niż woda w stanie ciekłym. Zatem na tych ciałach niebieskich, na których woda nie może powstać lub się utrzymać, mogą istnieć ciecze jonowe. A, jak zauważają badacze, w cieczach takich niektóre biomolekuły – jak pewne białka – mogą być stabilne. Kierująca pracami zespołu badawczego doktor Rachana Agrawal zauważa, że jeśli w poszukiwaniu pozaziemskiego życia uwzględnimy ciecze jonowe, znacząco zwiększymy ekosferę, czyli obszar wokół gwiazd, w którym może istnieć życie.
      Badania nad cieczami jonowymi w kontekście istnienia życia rozpoczęto w związku z rozważaniem o obecności życia na Wenus. A raczej w górnych warstwach atmosfery, gdyż na powierzchni planety panuje temperatura rzędu 467 stopni Celsjusza, a ciśnienie atmosferyczne jest 90-krotnie większe niż na powierzchni Ziemi. Bardziej przyjazne warunki panują wśród chmur, w górnych warstwach atmosfery. Nie od dzisiaj mówi się o zorganizowaniu misji badawcza w te regiony.
      Chmury na Wenus składają się głównie z kwasu siarkowego. Naukowcy z MIT prowadzą eksperymenty, których celem jest opracowanie technik zbierania i badania próbek podczas misji. Jeśli takie próbki zostałyby zebrane, zbadanie istniejących w nich związków organicznych będzie wymagało najpierw odparowania kwasi siarkowego. Badacze stworzyli więc pracujący przy niskim ciśnieniu układ, w którym odparowywali kwas siarkowy z roztworu kwasu i glicyny. Jednak za każdym razem, gdy usunęli większość kwasu, w urządzeniu pozostawała warstwa cieczy. Uczeni szybko zdali sobie sprawę, że kwas siarkowy przereagował z glicyną, tworząc ciecz jonową, która utrzymywała się w szerokim zakresie temperatur i ciśnienia. Wtedy też zespół Agrawal wpadł na pomysł, by sprawdzić, czy ciecze jonowe mogą powstawać i utrzymywać się na planetach, na których panują zbyt wysokie temperatury lub zbyt niskie ciśnienie, by utrzymała się na nich woda w stanie ciekłym.
      Eksperymentatorzy przetestowali mieszaniny kwasu siarkowego z ponad 30 związkami organicznymi zawierającymi azot. Mieszaniny tworzyli m.in. na powierzchni skał bazaltowych, które istnieją na wielu planetach. Byliśmy zdumieni, w jak wielu różnych warunkach dochodzi do powstania cieczy jonowej. Jeśli umieścisz kwas siarkowy i związki organiczne na bazalcie, nadmiar kwasu siarkowego wsiąknie w bazalt, a na powierzchni pozostaną krople cieczy jonowej. Formowała się ona w każdych testowanych przez nas warunkach, mówi współautorka badań Sara Seager.
      Ciecze jonowe powstawały w temperaturze do 180 stopni Celsjusza przy ekstremalnie niskim ciśnieniu. To oznacza, że mogą powszechnie występować na skalistych planetach czy księżycach. Wyobraźmy sobie planetę gorętsza od Ziemi, na której nie ma wody, a na której występuje, lub kiedyś występował, kwas siarkowy z aktywności wulkanicznej. Wystarczy, że ten kwas będzie miał kontakt ze związkiem organicznym. A związki te są powszechne w Układzie Słonecznym, wyjaśnia Seager. Tak utworzona ciecz jonowa może teoretycznie istnieć przez tysiąclecia, stając się oazą prostych form życia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Lód w przestrzeni kosmicznej jest inny, niż dotychczas sądzono, wynika z badań przeprowadzonych przez uczonych z University College London i University of Cambridge. Ich zdaniem, zawiera on niewielkie kryształki i nie jest całkowicie nieuporządkowanym amorficznym materiałem, jak woda. Przez dekady uważano, że lód poza Ziemią nie posiada struktury, jest amorficzny, gdyż znacznie niższe niż na Ziemi temperatury nie zapewniają wystarczająco dużo energii, by podczas zamarzania uformowały się kryształy.
      Autorzy nowych badań przyjrzeli się najpowszechniej występującej formie lodu we wszechświecie, amorficznemu lodowi o niskiej gęstości, który występuje w kometach, na lodowych księżycach czy w chmurach materiału, z których powstają gwiazdy i planety. Przeprowadzone przez nich symulacje komputerowe wykazały, że lód taki najlepiej odpowiada wynikom analiz gdy nie jest w pełni amorficzny, a zawiera niewielkie kryształki o średnicy 3 nanometrów. Naukowcy przeprowadzili też badania, w czasie których krystalizowali (np. poprzez podgrzewanie) uzyskane w różny sposób próbki amorficznego lodu. Zauważyli, że ostateczna struktura krystaliczna lodu zależała od tego, w jaki sposób został oryginalnie utworzony. Stwierdzili też, że gdyby taki lód był w pełni amorficzny, to nie zachowałby żadnych informacji o swojej wcześniejszej strukturze.
      Teraz mamy dobre pojęcie, jak na poziomie atomowym wygląda najbardziej rozpowszechniony lód we wszechświecie. To bardzo ważna wiedza, gdyż lód bierze udział w wielu procesach kosmologicznych, na przykład w formowaniu się planet, ewolucji galaktyk czy przemieszczaniu materii we wszechświecie, wyjaśnia główny autor badań doktor Michael B. Davies.
      Lód na Ziemi to kosmologiczny ewenement z powodu wysokich temperatur panujących na naszej planecie. Ma dzięki nim uporządkowaną naturę. Uznawaliśmy, że lód w pozostałych częściach wszechświata jest jak unieruchomiona ciekła woda, nieuporządkowana struktura. Nasze badania pokazują, że nie jest to do końca prawda. I każą zadać pytanie o amorficzne struktury w ogóle. Takie materiały są niezwykle ważne dla nowoczesnych technologii. Na przykład światłowody powinny być amorficzne. Jeśli jednak zawierają niewielkie kryształki, a my będziemy potrafili je usunąć, poprawimy ich wydajność, dodaje profesor Christoph Salzmann.
      Badania prowadzono zarówno metodą symulacji komputerowych, jak i tworząc amorficzny lód. Metodami obliczeniowymi sprawdzano dwa rodzaje wirtualnego lodu. Jeden powstawał podczas obniżania temperatury wirtualnych molekuł wody do -120 stopni Celsjusza. W zależności od tempa schładzania otrzymany lód składał się ze struktury krystalicznej i amorficznej w różnych proporcjach. Okazało się, że właściwości wirtualnego lodu zawierającego 20% struktury krystalicznej i 80% amorficznej blisko odpowiadają właściwościom prawdziwego lodu amorficznego o niskiej gęstości, który badano metodą dyfrakcji promieniowania rentgenowskiego. Drugi rodzaj lodu składał się z niewielkich ściśniętych razem kryształków pomiędzy którymi symulowano istnienie struktury amorficznej. Taki lód wykazywał największe podobieństwo do prawdziwego kosmicznego lodu gdy zawierał 25% kryształków.
      Natomiast podczas badań eksperymentalnych uzyskiwano amorficzny lód o niskiej gęstości albo poprzez osadzanie pary wodnej na bardzo zimnej powierzchni, albo podgrzewając amorficzny lód o dużej gęstości. Następnie tak uzyskany amorficzny lód o niskiej gęstości był delikatnie podgrzewany, by miał wystarczająco dużo energii do utworzenia kryształów. Różnice w uzyskanej w ten sposób strukturze zależały od pierwotnej metody wytworzenia lodu. W ten sposób naukowcy doszli do wniosku, że gdyby lód taki był całkowicie amorficzny, nie zachowałby pamięci o swojej pierwotnej strukturze.
      Lód to potencjalnie bardzo przydatny materiał w kosmosie. Mógłby posłużyć do ochrony pojazdu kosmicznego przed promieniowaniem czy do wytworzenia paliwa. Dlatego musimy lepiej rozumieć jego różne rodzaje i właściwości, podsumowuje doktor Davies.
      Źródło: Low-density amorphous ice contains crystalline ice grains, https://journals.aps.org/prb/abstract/10.1103/PhysRevB.112.024203

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W miarę jak zwiększa się liczba pojazdów w przestrzeni kosmicznej, im bardziej skomplikowane są misje kosmiczne i w im większej odległości się odbywają, tym większą rolę odgrywa automatyzacja zadań. Dużą liczbą satelitów nie da się ręcznie zarządzać, dlatego większość z nich korzysta z systemów automatycznych, a ludzka interwencja potrzebna jest w sytuacjach awaryjnych, w przypadku aktualizacji oprogramowania czy zmiany orbity. Z kolei w przypadku misji w dalszych częściach Układu Słonecznego ręczne sterowanie pojazdami jest wręcz niemożliwe z powodu dużych odległości i opóźnień sygnału.
      Coraz większa automatyzacja jest więc niezbędna, gdyż wysyłamy poza Ziemię coraz więcej pojazdów i chcemy eksplorować coraz dalsze zakątki przestrzeni kosmicznej. W ostatnich latach na MIT uruchomiono Kerbal Space Program Differential Game Challenge. To rodzaj zawodów, opartych o grę Kerbal Space Program, których celem jest zachęcenie specjalistów do rozwijania autonomicznych systemów dla programów kosmicznych. Gra Kerbal Space Program powstała w 2015 roku i jest to pseudorealistyczny symulator lotów kosmicznych, uwzględniających prawdziwe manewry orbitalne, jak na przykład dokowanie w przestrzeni kosmicznej czy manewr transferowy Hohmanna. Zawody na MIT uwzględniają różne scenariusze, na przykład zadaniem uczestników jest podążanie za satelitą i jego przechwycenie.
      Alejandro Carrasco, Victor Rodriguez-Fernandez i Richard Linares postanowili sprawdzić, jak w zawodach poradzą sobie komercyjne wielkie modele językowe, jak ChatGPT czy Llama. Zdecydowali się oni użyć LLM, gdyż tradycyjne metody tworzenia systemów autonomicznych wymagają wielokrotnych sesji treningowych i poprawkowych. Ciągłe udoskonalanie modelu jest niepraktyczne, gdyż każda z misji w Kerbal trwa jedynie kilka godzin. Tymczasem wielkie modele językowe są już wytrenowane na olbrzymiej liczbie tekstów i wymają jedynie niewielkiego doszlifowania pod kątem inżynieryjnym. Badacze najpierw musieli opracować metodę, która przekładała stan pojazdu kosmicznego i zadania na tekst. Był on następnie wysyłany do wielkich modeli językowych z prośbą o rekomendacje, co do odpowiednich działań. Zalecenia LLM były następnie przekładane na kod, który sterował pojazdem.
      Po krótkiej nauce ChatGPT poradził sobie doskonale. Uplasował się na 2. miejscu w zawodach. Pierwsze miejsce zajął inny, wyspecjalizowany kod. Co więcej, badania – których wyniki mają zostać wkrótce opublikowane na łamach Journal of Advances in Space Research – zostały przeprowadzone jeszcze zanim dostępna była wersja ChatGPT 4. Co prawda LLM nie jest jeszcze gotowy do sterowania misją kosmiczną. Szczególnie poważny problem stanowią podawane przezeń czasem nonsensowne przypadkowe rozwiązania, które zakończyłyby się katastrofą w przypadku prawdziwej misji. Jednak przeprowadzone badania pokazują, że nawet standardowy komercyjny LLM może być wykorzystany do pracy w sposób, którego jego twórcy z pewnością nie przewidzieli.
      Źródło: Large Language Models as Autonomous Spacecraft Operators in Kerbal Space Program, https://arxiv.org/abs/2505.19896

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ludzie od dawna spożywają alkohol i od tysiącleci odgrywa on rolę we wzmacnianiu więzi społecznych. Nowe badania wskazują, że nasi najbliżsi krewni – szympansy – mogą wykorzystywać alkohol w podobnym celu. Po raz pierwszy udało się sfilmować szympansy, które dzielą się sfermentowanymi owocami, w których stwierdzono obecność alkoholu.
      Naukowcy pracujący pod kierunkiem badaczy z University of Exeter ustawili kamery w Parku Narodowym Cantanhez w Gwinei-Bissau. Na nagraniach widać, jak szympansy dzielą się sfermentowanymi owocami drzewa z gatunku Treculia africana. To zaś rodzi pytanie, czy zwierzęta używają alkoholu w tym samym celu, co ludzie.
      Wiemy, że u ludzi spożywanie alkoholu prowadzi do uwalniania dopaminy i endorfiny, poczucia odprężenia i szczęścia. Wiemy też, że alkohol – w tym takie tradycyjne ludzkie zachowania jak organizowanie uczt – pomaga tworzyć i wzmacniać więzi społeczne. Skoro teraz wiemy, że szympansy dzielą się owocami zawierającymi alkohol, pytanie brzmi: czy odnoszą z alkoholu podobne korzyści, co ludzie, zastanawia się Anna Bowland w University of Exeter. Kamery zarejestrowały 10 różnych okazji, podczas których szympansy dzieliły się owocami z alkoholem. Gdy następnie naukowcy zbadali pozostawione resztki stwierdzili, że średnia zawartość alkoholu w owocach wynosiła 0,61%. To niewiele, jednak musimy pamiętać, że owoce stanowią 60–85% diety szympansów, zatem mogą one spożywać dość spore jego ilości.
      Naukowcy nie sądzą, by małpy się upijały. To niebezpieczne i zmniejsza szanse przetrwania. Nie znamy też wpływu alkoholu na metabolizm szympansów. Niedawno jednak odkryto, że już u wspólnego przodka afrykańskich małp doszło do pojawienia się adaptacji, która poprawiła metabolizm alkoholu, co może wskazywać, że jego spożywanie ma naprawdę długą tradycję.
      Doktor Kimberley Hockings zauważa, że szympansy nie dzielą się przez cały czas pożywieniem. Zatem fakt, iż dzieliły się owocami zawierającymi alkohol daje do myślenia. Musimy sprawdzić, czy celowo szukają owoców z alkoholem, w jaki sposób go metabolizują i czy dzielenie się nimi może być wczesnym etapem rozwoju tradycji ucztowania. Jeśli tak, będzie to wskazywało, że wspólne biesiadowanie jest zaszyte głęboko w naszej ewolucji, dodaje uczona.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Spożycie alkoholu wśród zwierząt jest bardziej rozpowszechnione, niż sądzimy – uważają naukowcy w University of Exeter, University of Calgary i College of Central Florida. Przypominają oni, że etanol jest obecny niemal w każdym ekosystemie, należy więc przyjąć, że prawdopodobnie jest regularnie spożywany przez większość zwierząt odżywiających się owocami i nektarem. Swoje wnioski uczeni opublikowali na łamach pisma Trends in Ecology & Evolution.
      Niejednokrotnie słyszeliśmy doniesienia o zwierzętach, które upiły się sfermentowanymi owocami. Jednak poza tymi anegdotycznymi informacjami, nauka stoi na stanowisku, że zwierzęta – z wyjątkiem człowieka – rzadko spożywają alkohol. Autorzy wspomnianej pracy uważają, że pogląd ten wymaga rewizji. Musimy porzucić antropocentryczny punkt wiedzenia, zgodnie z którym etanolu używają ludzie. Substancja ta jest znacznie bardziej rozpowszechniona w środowisku, niż sądziliśmy, i większość zwierząt jedzących owoce jest wystawionych na działanie alkoholu, mówi doktor Kimberley Hockings z University of Exeter.
      Etanol powszechnie pojawił się na Ziemi około 100 milionów lat temu, gdy rośliny kwitnące zaczęły wytwarzać nektar i owoce zawierające cukier, które mogły zostać poddane fermentacji przez drożdże. Obecnie etanol jest z sposób naturalny obecny w niemal każdym ekosystemie, a jego stężenie jest wyższe na niższych szerokościach geograficznych i w wilgotnych tropikach. Tam też pojawia się on przez cały rok.
      W większości przypadków w wyniku naturalnej fermentacji w owocach stężenie alkoholu sięga 2%. Jednak na przykład w przejrzałych owocach palm w Panamie zanotowano stężenie sięgające 10,3%.
      Geny pozwalające na rozkładanie etanolu są starsze niż sam etanol. Mamy też dowody, że u ptaków i ssaków doszło do udoskonalenia możliwości trawienia etanolu już po jego pojawieniu się. Najbardziej efektywnie etanol jest metabolizowany przez naczelne i wiewióreczniki. Dlaczego właśnie u nich? Wyjaśnienie jest proste. Z ekologicznego punktu widzenia nie jest zbyt korzystnym chodzenie po drzewach w stanie upojenia alkoholowego. To przepis, by nie przekazać dalej genów, mówi Matthew Carrigan z College of Central Florida.
      Uczony dodaje, że w przypadku zwierząt mamy do czynienia z odmiennym mechanizmem niż u ludzi. Ludzie chcą się upić, a nie chcą przy tym dodatkowych kalorii. Zwierzęta poszukują kalorii, ale nie chcą się upijać. Nie jest jasne, czy zwierzęta spożywają etanol dla samego etanolu. Tutaj potrzeba dalszych badań, na przykład nad wpływem etanolu na fizjologię i ewolucję zwierząt.
      Jednak, jak zauważają naukowcy, spożycie etanolu może przynosić dzikim zwierzętom korzyści. Przede wszystkim zawiera on sporo kalorii, a jego silny zapach prowadzi zwierzęta do źródła pożywienia. Chociaż, jak uważają naukowcy, jest mało prawdopodobne, by zwierzęta wyczuwały sam etanol.
      Etanol może przynosić też korzyści zdrowotne. Muszki owocówki celowo składają jajka tam, gdzie jest etanol, gdyż chroni on je przed pasożytami. Zauważono też, że larwy owocówek zwiększają spożycie etanolu jeśli zostaną zarażone pasożytem.
      Kwestią otwartą pozostaje pytanie, czy po spożyciu etanolu zwierzęta również czują się przyjemnie, są odprężone, chętniej nawiązują kontakty społeczne. By to zbadać musimy sprawdzić, jaka jest fizjologiczna reakcja zwierząt na etanol, mówi Anna Bowland z Exeter.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...