Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Metabolizm robotów – maszyny zyskają możliwość samodzielnej naprawy i replikacji
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Kamienie nerkowe to jedna z najbardziej rozpowszechnionych chorób układu moczowego. Cierpi na nie około 12% populacji. Obecnie usuwa się je za pomocą leków lub podczas zabiegów chirurgicznych. Jednak metody te są bardzo uciążliwe dla osób, które nie tolerują leków, albo też mają problem z wciąż nawracającymi kamieniami. Międzynarodowy zespół z Kanady, Hiszpanii i Niemiec pracuje nad niewielkimi robotami, których celem będzie rozpuszczanie kamieni nerkowych.
Nowa minimalnie inwazyjna technika została już z powodzeniem przetestowana na wydrukowanym trójwymiarowym modelu nerki. Roboty mają trafić w pobliże kamienia i rozpuścić go do tego stopnia, że w ciągu kilku dni samodzielnie opuści układ moczowy.
Testowane roboty mają około 1 centymetra długości, są wykonane z hydrożelu i zawierają mikromagnesy. Po wprowadzeniu do cewki moczowej, robotami można sterować za pomocą pola magnetycznego i umieścić je w pobliżu kamienia. Roboty zostały wyposażone w ureazę. To enzym, który odpowiada za rozkład mocznika na amoniak i dwutlenek węgla. Ureaza uwalnia się z hydrożelu i zwiększa zasadowość moczu, dzięki czemu znakomicie przyspiesza rozpuszczanie kamieni moczanowych i cystynowych, które w ciągu kilku dni opuszczają organizm. Dodatkową zaletą tej techniki jest fakt, że dzięki magnesom roboty są dobrze widoczne na USG, zatem przebieg leczenia można łatwo kontrolować. Roboty mają wymiary 1x1x12 mm, więc bez problemu powinny zmieścić się w każdym zakamarku układu moczowego i dotrzeć wszędzie tam, gdzie będą potrzebne.
Nie od dzisiaj wiadomo, że proces rozpuszczania kamieni nerkowych znacząco przyspiesza przy pH > 6, a ideałem jest osiągnięcie pH 7,0–7,2. Leki stosowane w leczeniu kamieni nerkowych mają za zadanie zwiększyć alkaliczność moczu. Jest to jednak proces długotrwały, a leki muszą być ciągle przyjmowane. Autorzy badań, wykorzystując swoje roboty, zwiększyli zasadowość sztucznego moczu z pH 6 do pH 7 w ciągu zaledwie godziny, a pH 9 osiągnęli w ciągu 24 godzin.
Oczywiście nie ma potrzeby, a nawet nie powinno się, zmieniać odczynu moczu na aż tak bardzo zasadowy. Nadmierna alkalizacja, pH > 7,5, sprzyja bowiem powstawaniu kamieni fosforanowych i struwitowych. Potwierdziły to zresztą badania. Najlepsze wyniki w redukcji masy kamienia – o 30% w ciągu 5 dni – osiągnięto przy pH 7.
Z wynikami badań można zapoznać się na stronie Advanced Healthcare Materials.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Duńscy badacze opisali podstawy procesu, za pomocą którego komórki nowotworowe naprawiają niebezpieczne dla nich uszkodzenia błony komórkowej. Wykazali przy tym, że powstrzymanie tego procesu powoduje śmierć komórek. Proces makropinocytozy może stać się celem przyszłych terapii przeciwnowotworowych, mówi Jesper Nylandsted z Uniwersytetu w Kopenhadze, który stał na czele grupy badawczej.
Błona komórkowa jest zasadniczym elementem chroniącym komórkę przed niekorzystnym wpływem czynników zewnętrznych. Dobrze znamy wstępny mechanizm naprawy błony komórkowej, jednak mniej wiemy o tym, w jaki sposób komórki naprawiają samą strukturę błony, by przywrócić homeostazę, stwierdza Nylandsted.
Duńczycy uszkadzali komórki nowotworowe, wypalając w ich błonach otwory za pomocą lasera. Już wcześniej specjaliści z Duńskiego Towarzystwa Raka obserwowali, jak komórki potrafią „zszywać” tak uszkodzoną błonę. Tym razem okazało się, że – szczególnie komórki agresywnych nowotworów – wykorzystują podczas naprawy proces makropinocytozy. Niewykluczone, że preferowany jest ten mechanizm, gdyż dzięki niemu komórka ma możliwość ponownego użycia uszkodzonej błony. Ten rodzaj recyklingu może być użyteczny w przypadku komórek nowotworowych, gdyż podlegają one częstym podziałom, co wymaga od nich dużej ilości energii i materiału.
Uzyskane przez nas wyniki wskazują, że komórki aktywnie wymieniają uszkodzoną część błony i naprawiają ją za pomocą makropinocytozy. Wydaje się, że kluczowy jest tutaj pierwszy krok internalizacji uszkodzonej błony drogą makropinocytozy. To właśnie umożliwia komórce przetrwanie. Sądzimy, że dzięki temu, usuwając uszkodzoną błonę i proteiny po wstępnej naprawie, komórki nowotworowe lepiej radzą sobie z problemem, stwierdzają badacze.
Duńczycy próbują dowiedzieć się więcej o tym, w jaki sposób komórki nowotworowe chronią swoją błonę komórkową. Obok makropinocytozy interesuje nas to, co dzieje się po wstępnym zamknięciu uszkodzonej błony. Sądzimy, że to wstępne łatanie jest dość pobieżne i później konieczna jest lepszej jakości naprawa. To może być kolejny słaby punkt komórek nowotworowych, któremu chcemy się bliżej przyjrzeć, mówi doktor Stine Lauritzen Sønder.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naturalne jaskinie to ważne cele przyszłych misji NASA. Będą one miejscem poszukiwań dawnego oraz obecnego życia w kosmosie, a także staną się schronieniem dla ludzi, mówi Ali Agha z Team CoSTAR, który rozwija roboty wyspecjalizowane w eksploracji jaskiń. Jak wcześniej informowaliśmy, na Księżycu istnieją gigantyczne jaskinie, w których mogą powstać bazy.
Team CoSTAR, w skład którego wchodzą specjaliści z Jet Propulsion Laboratory i California Instute of Technology to jednym z zespołów, który przygotowuje się do wzięcia udziału w tegorocznych zawodach SubT Challenge organizowanych przez DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).
CoSTAR wygrał ubiegłoroczną edycję SubT Urban Circuit, w ramach której roboty eksplorowały tunele stworzone przez człowieka. Teraz coś na coś trudniejszego i mniej przewidywalnego. Czas na naturalne jaskinie i tunele.
Specjaliści z CoSTAR i ich roboty pracują w jaskiniach w Lava Beds National Monument w północnej Kalifornii. Jaskiniowa edycja Subterranean Challenge jest dla nas szczególnie interesująca, gdyż lokalizacja taka bardzo dobrze pasuje do długoterminowych planów NASA. Chce ona eksplorować jaskinie na Księżycu i Marsie, w szczególności jaskinie lawowe, które powstały w wyniku przepływu lawy. Wiemy, że takie jaskinie istnieją na innych ciałach niebieskich. Kierowany przez Jen Blank zespół z NASA prowadził już testy w jaskiniach lawowych i wybrał Lava Beds National Monument jako świetny przykład jaskiń podobnych do tych z Marsa. Miejsce to stawia przed nami bardzo zróżnicowane wyzwania. Jest tam ponad 800 jaskiń, mówi Ben Morrell z CoSTAR.
Eksperci zwracają uwagę, że istnieje bardzo duża różnica w dostępności pomiędzy tunelami stworzonymi przez człowieka, a naturalnymi jaskiniami. Z jednej strony struktury zbudowane ludzką ręką są bardziej rozwinięte w linii pionowej, są wielopiętrowe, z wieloma poziomami, schodami, przypominają labirynt. Jaskinie natomiast charakteryzuje bardzo trudny teren, który stanowi poważne wyzwanie nawet dla ludzi. Są one trudniej dostępne, z ich eksploracją wiąże się większe ryzyko, są znacznie bardziej wymagające dla systemów unikania kolizji stosowanych w robotach.
Agha i Morrell mówią, że jaskinie lawowe ich zaskoczyły. Okazały się znacznie trudniejsze niż sądzili. Stromizny stanowią duże wyzwanie dla robotów. Powierzchnie tych jaskiń są niezwykle przyczepne. To akurat korzystne dla robotów wyposażonych w nogi, jednak roboty na kołach miały tam poważne problemy. Przed urządzeniami stoją tam zupełnie inne wyzwania. Zamiast rozpoznawania schodów i urządzeń, co było im potrzebne w tunelach budowanych przez człowieka, muszą radzić sobie np. z nagłymi spadkami czy obniżającym się terenem.
Miejskie tunele są dobrze rozplanowane, nachylone pod wygodnymi kątami, z odpowiednimi zakrętami, prostymi korytarzami i przejściami. Można się tam spodziewać równego podłoża, wiele rzeczy można z góry zaplanować. W przypadku jaskiń wielu rzeczy nie można przewidzieć.
Celem SubT Challenge oraz zespołu CoSTAR jest stworzenie w pełni autonomicznych robotów do eksploracji jaskiń. I cel ten jest coraz bliżej.
Byliśmy bardzo szczęśliwi, gdy podczas jednego z naszych testów robot Spot [Boston Dynamics – red.] w pełni autonomicznie przebył całą jaskinię. Pełna autonomia to cel, nad którym pracujemy zarówno na potrzeby NASA jak i zawodów, więc pokazanie, że to możliwe jest wielkim sukcesem, mówi Morrell. Innym wielkim sukcesem było bardzo łatwe przełożenie wirtualnego środowiska, takiego jak systemy planowania, systemy operacyjne i autonomiczne na rzeczywiste zachowanie się robota, dodaje. Jak jednak przyznaje, zanotowano również porażki. Roboty wyposażone w koła miały problemy w jaskiniach lawowych. Dochodziło do zużycia podzespołów oraz poważnych awarii sprzętu. Ze względu na epidemię trudno było sobie z nimi poradzić w miejscu testów, stwierdza ekspert.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Badacze z Rutgers University stworzyli kierowanego USG robota do pobierania krwi, który radził sobie z tym zadaniem tak samo dobrze, a nawet lepiej niż ludzie. Odsetek skutecznych procedur wyliczony dla 31 pacjentów wynosił 87%. Dla 25 osób z łatwo dostępnymi żyłami współczynnik powodzenia sięgał zaś aż 97%.
W urządzeniu znajduje się analizator hematologiczny z wbudowaną wirówką. Może ono być wykorzystywane przy łóżkach pacjentów, a także w karetkach czy gabinetach lekarskich.
Wenopunkcja, czyli nakłuwanie żyły, by wprowadzić igłę bądź cewnik, to częsta procedura medyczna. W samych Stanach rocznie przeprowadza się ją ponad 1,4 mld razy. Wcześniejsze badania wykazały, że nie udaje się to u 27% pacjentów z niewidocznymi żyłami, 40% osób bez żył wyczuwalnych palpacyjnie i u 60% wyniszczonych chorych.
Powtarzające się niepowodzenia związane z wkłuciem pod kroplówkę zwiększają ryzyko zakażeń czy zakrzepicy. Czas poświęcany na przeprowadzenie procedury się wydłuża, rosną koszty i liczba zaangażowanych w to osób.
Takie urządzenie jak nasze może pomóc pracownikom służby zdrowia szybko, skutecznie i bezpiecznie pozyskać próbki, zapobiegając w ten sposób niepotrzebnym komplikacjom i bólowi towarzyszącemu kolejnym próbom wprowadzenia igły - podkreśla doktorant Josh Leipheimer.
W przyszłości urządzenie może być wykorzystywane w takich procedurach, jak cewnikowanie dożylne, dializowanie czy wprowadzanie kaniuli tętniczej.
Kolejnym etapem prac ma być udoskonalenie urządzenia, tak by zwiększyć odsetek udanych procedur u pacjentów z trudno dostępnymi żyłami. Jak podkreślają Amerykanie, dane uzyskane w czasie tego studium zostaną wykorzystane do usprawnienia sztucznej inteligencji w robocie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Robot z piórami gołębia to najnowsze dzieło naukowców z Uniwersytetu Stanforda. Korzysta ono z dodatkowego elementu, ułatwiającego ptakom latanie – możliwości manipulowania rozstawem piór i kształtem skrzydeł.
David Lentink ze Stanforda przyglądał się sposobowi pracy skrzydeł, poruszając skrzydłami martwego gołębia. Zauważył, że najważniejszy dla zmiany kształtu skrzydeł są kąty poruszania się dwóch stawów: palca i nadgarstka. To dzięki ich zmianie sztywne pióra zmieniają kształt tak, że zmienia się cały układ skrzydeł, co znakomicie pomaga w kontroli lotu.
Korzystając z tych doświadczeń Lentink wraz z zespołem zbudowali robota, którego wyposażyli w prawdziwe pióra gołębia.
Robot to urządzenie badawcze. Dzięki niemu naukowcy z USA mogą prowadzić eksperymenty bez udziału zwierząt. Zresztą wielu testów i tak nie udało by się przeprowadzić wykorzystując zwierzęta. Na przykład uczeni zastanawiali się, czy gołąb może skręcać poruszając palcem tylko przy jednym skrzydle.
Problem w tym, że nie wiem, jak wytresować ptaka, by poruszył tylko jednym palcem, a jestem bardzo dobry w tresurze ptaków, mówi Lentink, inżynier i biolog z Uniwersytetu Stanforda. Robotyczne skrzydła rozwiązują ten problem. Testy wykazały, że zgięcie tylko jednego z palców pozwala robotowi na wykonanie zakrętu, a to wskazuje, że ptaki również mogą tak robić.
Uczeni przeprowadzili też próby chcąc się dowiedzieć, jak ptaki zapobiegają powstaniu zbyt dużych przerw pomiędzy rozłożonymi piórami. Pocierając jedno pióro o drugie zauważyli, że początkowo łatwo się one z siebie ześlizgują, by później się sczepić. Badania mikroskopowe wykazały, że na krawędziach piór znajdują się niewielkie haczyki zapobiegające ich zbytniemu rozłożeniu. Gdy pióra znowu się do siebie zbliżają, haczyki rozczepiają się. W tym tkwi ich tajemnica. Mają kierunkowe rzepy, które utrzymują pióra razem, mówi Lentink.
Uczeni, aby potwierdzić swoje spostrzeżenia, odwrócili pióra i tak skonstruowane skrzydło umieścili w tunelu aerodynamicznym. Pęd powietrza utworzył takie przerwy między piórami, że wydajność skrzydła znacznie spadła.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.