Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Chińczycy stworzyli soczewki kontaktowe do widzenia w ciemnościach
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Na rynku dostępne są przeróżne rodzaje soczewek kontaktowych, które produkuje się w szerokim zakresie parametrów. Zdecydowana większość okularników z powodzeniem może nosić soczewki kontaktowe, dotyczy to nawet osób o nietypowych wadach wzroku. Jak dobrać odpowiednie soczewki spośród wielu typów i rodzajów? Czym różnią się od siebie soczewki kontaktowe sferyczne i toryczne?
Typy i rodzaje soczewek kontaktowych !RCOL
Popyt na soczewki kontaktowe nieustannie rośnie, dzięki czemu producenci rozszerzają swoją ofertę i chętnie inwestują w nowe technologie i rozwiązania. Współczesne soczewki są produktami bezpiecznymi do użytkowania, i jeśli spełnia się jeden podstawowy warunek – dba o higienę, m.in. przez przestrzeganie terminu ich przydatności, ryzyko wystąpienia infekcji oka jest minimalne. Na polskim rynku można spotkać soczewki kontaktowe sferyczne (https://www.bezokularow.pl/soczewki-sferyczne), toryczne, progresywne i kolorowe. Dzielą się one także ze względu na czas ich użytkowania, na soczewki jednodniowe, dwutygodniowe, miesięczne, kwartalne i całodobowe, przy czym najpopularniejsze to soczewki kontaktowe jednodniowe i miesięczne. Jak dobrać odpowiednie dla siebie soczewki wśród tak bogatego wyboru? Najlepszą opcją jest umówienie się na konsultację z optometrystą, który wykona badanie parametrów oka, pomoże w nauce zdejmowania i zakładania soczewek, rozwieje wszelkie wątpliwości i podzieli się wskazówkami co do ich użytkowania. Konsultacje z optometrystą są możliwe także za pośrednictwem Wirtualnego Gabinetu – warto rozważyć tę opcję, zwłaszcza w czasie pandemii COVID-19.
Czym różnią się soczewki kontaktowe sferyczne od torycznych? Soczewki kontaktowe sferyczne to najczęściej spotykane soczewki. Odpowiadają one standardowym okularom do korekcji wzorku, a konkretniej dla krótkowidzów i dalekowidzów. Soczewki sferyczne kształtem przypominają półmisek lub kulę, a ich moc rozkłada się równomiernie po całej powierzchni. Są dostępne w mocach od +25 dioptrii do -25 dioptrii, więc jeśli optometrysta po badaniu zaleci Wam ich stosowanie, należy zwrócić uwagę głównie na liczbę dioptrii – dla krótkowidzów są to „minusy”, a dla dalekowidzów „plusy”. Natomiast soczewki kontaktowe toryczne (https://www.bezokularow.pl/soczewki-toryczne) odpowiadają szkłom kontaktowym projektowanym dla osób z astygmatyzmem. Te soczewki nie wykluczają jednak współwystępowania dalekowzroczności lub krótkowzroczności – można je kupić w każdej z możliwych konfiguracji, także z mocą 0 dioptrii. Soczewka toryczna różni się rozmieszczeniem mocy po powierzchni, jest ona nierównomierna. Bardzo ważne dla zdrowia oczu oraz komfortu korzystania z soczewek jest zdiagnozowanie występującej wady wzroku. Zdarza się, że osoby z astygmatyzmem przez długi czas nie wiedzą, że potrzebują innego typu okularów lub szkieł kontaktowych, by korygować swój wzrok! Dlatego zaleca się wizyty kontrolne u lekarza okulisty lub optometrysty co najmniej raz na rok-półtora, by dokonywać korekcji wzroku na bieżąco.
Jak dbać o soczewki kontaktowe? Obowiązkowym punktem przez zdejmowaniem lub zakładaniem soczewek kontaktowych jest umycie rąk. Jeśli używacie soczewek jednorazowych, nie są potrzebne dodatkowe akcesoria – każdego dnia otwiera się po prostu nową parę. Przy użytkowaniu soczewek wielorazowych należy zaopatrzyć się w płyn do soczewek oraz pojemniczki i każdego wieczora wkładać soczewkę do świeżego płynu. Dbanie o soczewki to nie tylko aspekt zdrowotny i higieniczny, ale także finansowy. Najkorzystniejsze dla domowego budżetu jest używanie soczewek kontaktowych kwartalnych, ale ten produkt sprawdzi się wyłącznie restrykcyjnie dbającym o higienę użytkownikom. Najdrożej wychodzi kupowanie soczewek jednorazowych. Soczewki toryczne są nieco droższe od sferycznych ze względu na dodatkowe wymagania, stąd warto poświęcić więcej czasu na ich odpowiednią pielęgnację.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po raz pierwszy udało się zmierzyć prędkość wiatrów wiejących na powierzchni brązowego karła. Dokonali tego astronomowie, którzy wykorzystali Karl G. Jansky Very Large Array (VLA) oraz Teleskop Kosmiczny Spitzera.
Opierając się na tym, co wiemy o wielkich planetach, takich jak Jowisz czy Saturn, naukowcy pod kierunkiem Katelyn Allers z Bucknell University zdali sobie sprawę z faktu, że prawdopodobnie uda się zmierzyć prędkość wiatru na powierzchni brązowego karła, wykorzystując w tym celu VLA i Spitzera. Gdy doszliśmy do takiego wniosku, zdziwiliśmy się, że nikt dotychczas nie przeprowadził takich badań, mówi Allers.
Naukowcy wzięli na cel brązowego karła 2MASS J10475385+2124234. Ma on średnicę mniej więcej Jowisza, ale jest 40-krotnie bardziej masywny. Obiekt znajduje się w odległości około 34 lat świetlnych od Ziemi.
Zauważyliśmy, że okres obrotowy Jowisza obserwowany za pomocą radioteleskopów jest inny niż okres obrotowy obserwowany w świetle widzialnym i w podczerwieni, mówi Allers. Jak wyjaśnia uczona, dzieje się tak, gdyż fale radiowe wchodzą w interakcje z polem magnetycznym planety, natomiast emisja w podczerwieni pochodzi z górnych warstw atmosfery. Wnętrze planety, jej źródło pola magnetycznego, obraca się wolniej niż atmosfera. A różnica wynika z prędkości wiatrów.
Stwierdziliśmy, że takie samo zjawisko powinniśmy zaobserwować w przypadku brązowych karłów. Postanowiliśmy więc przyjrzeć się okresowi obrotowemu czerwonego karła zarówno za pomocą radioteleskopu, jak i w podczerwieni, powiedziała Johanna Vos z Amerykańskiego Muzeum Historii Naturalnej.
Obserwacje rzeczywiście wykazały, że atmosfera brązowego karła obrana się szybciej niż jego wnętrze. A różnica jest znacznie większa, niż w przypadku Jowisza. O ile bowiem prędkość wiatru wiejącego na Jowiszu wynosi około 370 km/h, to dla brązowego karła obliczono ją na około 2300 km/h. Obliczenia te zgodne są z teorią i symulacjami, przewidującymi wyższe prędkości wiatru na brązowych karłach, mówi Allers.
Technika wykorzystana przez zespół Allers może zostać użyta do badania prędkości wiatrów na planetach pozasłonecznych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Stanforda i SLAC National Accelerator Laboratory stworzyli pierwszy na świecie akcelerator cząstek na chipie. Za pomocą podczerwonego lasera na długości ułamka średnicy ludzkiego włosa można cząstkom nadać energię, którą mikrofale nadają im na przestrzeni wielu metrów.
Akcelerator na chipie to prototyp, ale profesor Jelena Vuckovic, która kierowała zespołem badawczym, mówi, że zarówno projekt jak i techniki produkcyjne, można skalować tak, by uzyskać strumienie cząstek o energiach wystarczających do prowadzenia zaawansowanych eksperymentów chemicznych, biologicznych czy z nauk materiałowych. Akcelerator na chipie przyda się wszędzie tam, gdzie nie są wymagane najwyższe dostępne energie.
Największe akceleratory są jak potężne teleskopy. Na świecie jest ich tylko kilka i naukowcy muszą przyjeżdżać do takich miejsc jak SLAC by prowadzić eksperymenty. Chcemy zminiaturyzować technologię akceleratorów, by stała się ona bardziej dostępnym narzędziem naukowym, wyjaśnia.
Uczeni porównują swoje osiągnięcie do przejścia od potężnych mainframe'ów do posiadających mniejszą moc obliczeniową, ale wciąż użytecznych, pecetów. Fizyk Robert Byer mówi, że technologia accelerator-on-a-chip może doprowadzić do rozwoju nowych metod radioterapii nowotworów. Obecnie maszyny do radioterapii do wielkie urządzenia emitujące promieniowanie na tyle silne, że może ono szkodzić zdrowym tkankom. W naszym artykule stwierdzamy, że może być możliwe skierowanie strumienia cząstek precyzyjnie na guza, bez szkodzenia zdrowym tkankom, mówi uczony.
Za każdym razem, gdy laser emituje impuls – a robi to 100 000 razy na sekundę – fotony uderzają w elektrony i je przyspieszają. Wszystko to ma miejsce na przestrzeni krótszej niż średnica ludzkiego włosa.
Celem grupy Vukovic jest przyspieszenie elektronów do 94% prędkości światła, czyli nadanie im energii rzędu 1 MeV (milion elektronowoltów). W ten sposób otrzymamy przepływ cząstek o energii na tyle dużej, że będzie je można wykorzystać w medycynie czy badaniach naukowych.
Stworzony obecnie prototyp układu zawiera 1 kanał przyspieszający. Do nadania energii 1 MeV potrzebnych będzie tysiąc takich kanałów. I, wbrew pozorom, będzie to prostsze niż się wydaje. Jako, że mamy tutaj w pełni zintegrowany układ scalony, znajdują się już w nim wszystkie elementy potrzebne do wykonania zadania. Vukovic twierdzi że do końca bieżącego roku powstanie chip w którym elektrony zyskają energię 1 MeV. Będzie on miał długość około 2,5 centymetra.
Inżynier Olav Solgaard nie czeka na ukończenie prac nad chipem. Już teraz zastanawia się nad wykorzystaniem go w onkologii. Obecnie wysokoenergetyczne elektrony nie są używane w radioterapii, gdyż doprowadziłyby do oparzeń skóry. Dlatego też Solgaard pracuje rodzajem lampy elektronowej, którą wprowadzałoby się chirurgicznie w pobliże guza i traktowało chorą tkankę strumieniem elektronów generowanych przez akcelerator na chipie.
Warto w tym miejscu przypomnieć o rewolucyjnym laserze BELLA (Berkeley Lab Laser Accelerator), o którym informowaliśmy przed kilku laty. To najpotężniejszy kompaktowy akcelerator na świecie. Na przestrzeni 1 metra nadaje on cząstkom energie liczone w gigaelektronowoltach (GeV).
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na Uniwersytecie Kalifornijskim w San Diego powstały soczewki kontaktowe wyposażone w funkcje zoomu, które kontrolujemy za pomocą mrugnięcia okiem. Naukowcy sądzą, że ich wynalazek w przyszłości przyda się w protetyce oka, robotyce oraz posłuży do stworzenia doskonalszych okularów.
Powstaje pytanie, w jaki sposób powstały niezwykłe soczewki i jak to możliwe, że są kontrolowane za pomocą ruchów powiek? Odpowiedź jest zadziwiająco prosta. Naukowcy zmierzyli sygnały elektrookulograficzne powstające podczas ruchów gałki ocznej. Pozwoliło im to na odróżnienie sygnałów generowanych gdy patrzymy w dół, górę, w lewo, prawo, gdy mrugamy okiem raz i gdy robimy to dwa razy. Później „wystarczyło” stworzyć miękkie biomimetyczne soczewki reagujące na sygnały. Ich właściciel może zmieniać zoom dwukrotnie mrugając powieką.
Same soczewki są inspirowane budową ludzkiego oka. Składa się ona z dwóch warstw dielektrycznego elastomeru pozyskanego z taśmy VHP firmy 3M, pomiędzy którymi zamknięto słoną wodę. Woda przypomina soczewki ludzkiego oka, działa też jako jedna z elektrod dla elastomeru. Górna część elastomeru została pokryta specjalnym przewodzącym smarem węglowym, który pełni rolę drugiej elektrody. Kształt soczewek, a zatem i długość ogniskowej, można zmieniać za pomocą odpowiednich ruchów oczu.
Ze szczegółowym opisem działania soczewek można zapoznać się w artykule „A Biomimetic Soft Lens Controlled by Electrooculographic Signal”.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niezwykła emisja w podczerwieni, pochodząca z pobliskiej gwiazdy neutronowej, może wskazywać, że obiekty takie mają nieznane nam dotychczas właściwości. Istnienie tej emisji może wskazywać, że gwiazda jest otoczona dyskiem pyłu, inna możliwość to wiatr o dużej energii wiejący od gwiazdy i zderzający się z gazem w przestrzeni międzygwiezdnej.
Gwiazdy neutronowe są zwykle badane w paśmie radiowym oraz w pasmach o wysokich energiach, jak np. w paśmie promieniowania X. Teraz amerykańsko-turecki zespół wykazał, że wiele interesujących informacji można zdobyć, badając je w podczerwieni.
Ta konkretna gwiazda neutronowa należy do grupy siedmiu pobliskich pulsarów, zwanych Wspaniałą Siódemką, które są cieplejsze niż powinny, jeśli weźmiemy pod uwagę ich wiek i pozostałe zapasy energii. Wokół gwiazdy RX J0806.4-4123 zaobserwowaliśmy szeroki obszar emisji w podczerwieni rozciągający się na odległość około 200 j.a. od pulsaru, mówi główna autorka badań, profesor Bettina Posselt z Pennsylvania State University.
To pierwsza gwiazda neutronowe, której tak szeroko emitowany sygnał jest widoczny tylko w podczerwieni. Jedna hipoteza mówi, że wokół gwiazdy znajduje się materiał pozostały po eksplozji supernowej. Interakcja tego materiału z gwiazdą neutronową może rozgrzać pulsar i go spowolnić. Jeśli ta hipoteza się potwierdzi, zmieni się nasze rozumienie ewolucji gwiazd neutronowych, stwierdza Posselt.
Drugie możliwe wyjaśnienie to istnienie plerionu, czyli mgławicy wiatru pulsarowego. Do zaistnienia plerionu konieczne jest pojawienie się wiatru pulsarowego. Wiatr taki może powstawać, gdy cząstki są przyspieszane w polu elektrycznym obracającej się gwiazdy neutronowej. Gdy gwiazda taka przemieszcza się przez przestrzeń szybciej niż prędkość dźwięku, dochodzi do interakcji pomiędzy wiatrem pulsarowym a materią międzygwiezdną. Cząstki emitują wówczas promieniowanie synchrotronowe i widzimy sygnał w podczerwieni. Zwykle mgławice wiatru pulsarowego są widoczne w zakresie promieniowania X. Istnienie plerionu widocznego tylko w podczerwieni to coś niezwykłego i ekscytującego, wyjaśnia uczona.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.