Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Supermasywna czarna dziura galaktyki spiralnej emituje zaskakująco potężne dżety

Rekomendowane odpowiedzi

Kosmiczna niezwykłość, która rzuca wyzwanie naszemu rozumieniu wszechświata, pokazuje, jaki los może spotkać Drogę Mleczną. Międzynarodowy zespół naukowy, który pracował pod kierunkiem ekspertów z CHRIST University w Bangalore, badał olbrzymią galaktykę spiralną położoną w odległości miliarda lat świetlnych od Ziemi. W centrum galaktyki znajduje się supermasywna czarna dziura o masie miliardy razy większej od masy Słońca, która napędza gigantyczne dżety radiowe o długości 6 milionów lat świetlnych.

Badana galaktyka jest jedną z największych znanych galaktyk spiralnych. Równie wyjątkowe są jej dżety. Tak potężne znajdowano dotychczas niemal wyłącznie w galaktykach eliptycznych, nie spiralnych. To oznacza, że potencjalnie i Droga Mleczna mogłaby wygenerować w przyszłości tak potężne dżety. Jeśli by do tego doszło, mogłoby to oznaczać masowe wymieranie na Ziemi w wyniku intensywnego promieniowania

To odkrycie skłania nas do przemyślenia ewolucji galaktyk, zwiększania masy czarnych dziur i oraz sposobu, w jaki kształtują one swoje otoczenie. Jeśli galaktyka spiralna jest w stanie nie tylko przetrwać, ale i rozwijać się w tak ekstremalnych warunkach, co to oznacza dla przyszłości Drogi Mlecznej? Czy nasza galaktyka doświadczy w przyszłości takiego wysokoenergetycznego zjawiska, które będzie miało poważne konsekwencje dla życia?, zastanawia się główny autor badań, profesor Joydeep Bagchi.

Badacze wykorzystali Teleskop Hubble'a, Giant Metrewave Radio Telescope oraz Atacama Large Millimeter Wave Array za pomocą których przyjrzeli się galaktyce 2MASX J23453268−0449256. Ma ona średnicę 3-krotnie większą od Drogi Mlecznej. W jej wnętrzu odkryli supermasywną czarną dziurę emitującą potężne dżety. Właśnie te dżety są najbardziej zaskakujące. Obowiązuje bowiem pogląd, zgodnie z którym tak aktywne dżety powinny zniszczyć delikatną strukturę galaktyki spiralnej.

Tymczasem 2MASX J23453268−0449256 ma dobrze widoczne ramiona, niewielką poprzeczkę oraz otaczający ją niezakłócony wewnętrzny pierścień gwiazd o średnicy 4,4 kpc (ponad 14 000 lat świetlnych). Galaktykę otacza rozległe halo gorącego gazu emitującego promieniowanie rentgenowskie. Halo powoli stygnie, jednak potężne dżety działają jak piec, uniemożliwiając tworzenie się tam gwiazd, pomimo wystarczającej do ich powstania ilości materiału.

Centralna czarna dziura w Drodze Mlecznej – Sagittarius A (Sgr A*) – ma masę 4 milionów mas Słońca i jest wyjątkowo spokojna. Jednak, jak mówią badacze, może się to zmienić, jeśli wchłonie duża chmurę gazu, gwiazdę czy galaktykę karłowatą. W takiej sytuacji mogłyby pojawić się duże dżety. Takie zjawiska, zwane rozerwaniami pływowymi (TDE – tidal disruption event), obserwowano już w innych galaktykach. Gdyby Sgr A* zaczęła napędzać dżety, to ich wpływ zależałby od siły, kierunku i emisji energii. Taki dżet skierowany w pobliże Układu Słonecznego mógłby pozbawić planety atmosfery, doprowadzić do uszkodzeń DNA w wyniku zwiększonego promieniowania. pozbawić Ziemię warstwy ozonowej i doprowadzić do masowego wymierania.

Autorzy badań zauważyli też, że 2MASX J23453268−0449256 zawiera 10-krotnie więcej ciemnej materii niż Droga Mleczna. Jej obecność może być kluczowa dla stabilności tej szybko obracającej się galaktyki. Fascynującym tematem przyszłych badań może być przeanalizowanie zależności pomiędzy ciemną materią, aktywnością czarnej dziury a strukturą tej galaktyki.

Ze szczegółami można zapoznać się na łamach Monthly Notices of the Royal Astronomical Society.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Przed 10 laty 14 września 2015 roku interferometr LIGO zarejestrował pierwsze fale grawitacyjne wykryte przez człowieka (o ich odkryciu poinformowano 11 lutego 2016 roku). Ludzkość zyskała 3. sposób badania kosmosu, po falach elektromagnetycznych i promieniowaniu kosmicznym. Tym razem zaobserwowaliśmy zaginanie czasoprzestrzeni. Obecnie LIGO rutynowo wykrywa fale grawitacyjne. We współpracy z Virgo (Włochy) i KAGRA (Japonia) tworzy sieć LVK, która średnio co trzy dni rejestruje fale pochodzące z połączenia czarnych dziur. Teraz naukowcy z LVK zdobyli drugi w historii, i jednocześnie najdokładniejszy, dowód obserwacyjny, na prawdziwość teorii o powierzchni czarnych dziur Stephena Hawkinga. W przełomowych badaniach brała udział duża grupa polskich uczonych z Centrum Astronomicznego im. Mikołaja Kopernika, Uniwersytetu Warszawskiego, Uniwersytetu Jagiellońskiego, Polskiej Akademii Nauk, Uniwersytetu w Białymstoku i Narodowego Centrum Badań Jądrowych.
      W 1971 roku Stephen Hawking zaprezentował teorię, zgodnie z którą całkowita powierzchnia horyzontu zdarzeń czarnej dziury nigdy się nie zmniejsza. Pierwsze zarejestrowane przez człowieka fale grawitacyjne pochodziły z wydarzenia GW150914, które po analizie okazało się połączeniem czarnych dziur o masach 29 i 36 mas Słońca. W ich wyniku powstała nowa czarna dziura o masie 62 mas Słońca, a brakujące masa 3 Słońc została wyemitowana w postaci promieniowania grawitacyjnego. Gdy Stephen Hawking się o tym dowiedział, skontaktował się z naukowcami z LIGO i zapytał, czy wykryte zjawisko potwierdza jego teorię o powierzchni. Wówczas jednak naukowcy nie byli w stanie odpowiedzieć na to pytanie. Dopiero w 2019 roku, już po śmierci Hawkinga, stworzono odpowiednie techniki analizy danych. Dwa lata później, w 2021 roku ostatecznie stwierdzono, że obserwacje wykazały, iż powierzchnia wynikowej czarnej dziury się nie zmniejszyła. Dokładność obserwacji wynosiła 95%, czyli około 2 sigma. To zbyt mało, by mówić o odkryciu.
      Obecnie nadeszło silniejsze potwierdzenie prawdziwości teorii Hawkinga. Znaleziono je w danych z interferometru LIGO – Virgo i KAGRA były akurat wyłączone – który 14 stycznia bieżącego roku zaobserwował sygnał GW250114. Dostarczył on najsilniejszych dowodów na prawdziwość twierdzenia Hawkinga. ANaliza wykazała, że całkowita powierzchnia obu czarnych dziur, które się połączyły, wynosiła 240 000 km2, a powierzchnia nowo powstałej czarnej dziury to około 400 000 km2. Tym razem dokładność obserwacji wynosi 99,999%. Szczegóły badań opublikowano na łamach Physical Review Letters.
      Ten wyjątkowy pomiar był możliwy dzięki 10 latom udoskonaleń interferometru. Prace były prowadzone w obu wykrywaczach, w stanach Waszyngton i Louisiana. Nie wiem, co będzie za 10 lat, ale poprzednie 10 lat to czas olbrzymiego wzrostu czułości LIGO. Dzięki temu nie tylko wykrywamy coraz więcej nowych czarnych dziur, ale zdobywamy coraz bardziej szczegółowe dane na ich temat, mówi profesor Katerina Chatziioannou.
      Fale grawitacyjne ściskają i rozciągają przestrzeń o 1 część na 1021, zatem cała ziemia jest ściskana lub rozciągana o około szerokość atomu. LIGO składa się z dwóch bliźniaczych urządzeń umieszczonych w odległości około 3000 kilometrów od siebie. Każde z urządzeń ma kształt litery L o ramionach długości 4 kilometrów. Na końcach ramion znajdują się 40-kilogramowe lustra umieszczone dokładnie w tej samej odległości od lasera. W ich stronę wystrzeliwana jest wiązka lasera, która odbija się od luster i wraca do detektorów. Jeśli w trakcie ostrzeliwania luster laserem przez Ziemię przejdzie fala grawitacyjna, zmieni się odległość pomiędzy jednym z luster a laserem. Zatem światło w obu ramionach przebędzie różną drogę. Między promieniami światła dojdzie do interferencji, a badając ją naukowcy mogą mierzyć relatywną długość obu ramion z dokładnością do 1/10 000 szerokości protonu. To wystarczy, by wykryć zmiany długości ramion interferometru spowodowane przejściem fali grawitacyjnej.
      Wykorzystanie dwóch identycznych urządzeń położonych w dużej odległości od siebie ma na celu eliminację części zakłóceń powodowanych źródłami na Ziemi (może zostać zakłócone jedno urządzenie, ale drugie położone tak daleko nie odczuje zakłócenia lub będzie to odczuwalne w inny sposób). Duża odległość pozwala też na dodatkowe upewnienie się, że przeszła fala grawitacyjna. Fale te rozchodzą się bowiem z prędkością światła, dokładnie więc wiemy, jakie może być opóźnienie zarejestrowanego sygnału pomiędzy jednym a drugim urządzeniem. Dzięki odległości dzielącej urządzenia możemy też dokonywać lepszej triangulacji, czyli lepiej określać źródło sygnału, a włączenie do tej sieci Virgo i KAGRA dodatkowo zwiększa precyzję pomiarów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od XIX wieku nauka wie, że zdolność materiałów do absorbowania promieniowania elektromagnetycznego jest równoważna ich zdolności do emitowania tego promieniowania. Zjawisko to odkrył w 1859 roku Gustaw Kirchhoff, który sformułował prawo promieniowania cieplnego nazwane jego nazwiskiem. W ostatniej dekadzie naukowcy zaczęli poszukiwać metamateriałów zdolnych do złamania tego prawa. Udało się przed 2 laty, jednak obserwowane zjawisko było słabe. Teraz naukowcy z Pennsylvania State University donieśli o „dramatycznym” odejściu od prawa Kirchhoffa. Daje to nadzieję, że w przyszłości osiągnięcia tego typu można będzie wykorzystać w praktyce.
      Możliwość silnego naruszenia prawa Kirchhoffa to nie tylko nowy sposób na kontrolowanie promieniowania cieplnego, to też metoda znaczącego poprawienia działania urządzeń do wytwarzania użytecznej energii czy jej rejestrowania. Na przykład ogniwa fotowoltaiczne muszą – zgodnie z prawem Kirchhoffa – wyemitować energię z powrotem w kierunku Słońca. Ta energia jest dla nas stracona. Jeśli jednak ogniwa słoneczne emitowałyby tę energię w innym kierunku niż obecnie, moglibyśmy umieścić tam kolejne ogniwo, które zaabsorbowałoby część tej energii, zwiększając efektywność całego panelu. Taka strategia zbliżyłaby nas do pozyskiwania energii słonecznej z wydajnością bliską granicy wyznaczonej przez prawa termodynamiki, mówi główny autor badań Zhenong Zhang.
      Naukowcy z Penn State stworzyli materiał, który składa się z pięciu 440-nanometrowych warstw arsenku galu indu (InGaAs) domieszkowanych elektronowo. Im głębiej położona była warstwa, tym większe było domieszkowanie. Całość umieszczono na 100-nanometrowej warstwie srebra, a całość przeniesiono na krzemowe podłoże. Tak przygotowaną próbkę podgrzano do temperatury 267 stopni Celsjusza i poddano oddziaływaniu pola magnetycznego o natężeniu 5T. W takich warunkach stosunek zdolności absorpcji do emisji wyniósł 0,43, podczas gdy zgodnie z prawem Kirchhoffa powinien wynieść 1. Co więcej, złamanie symetrii zaobserwowano w szerokim zakresie kątów padania promieniowania oraz w zakresie promieniowania podczerwonego rozciągającym się od 13 do 23 mikrometrów.
      Autorzy badań uważają, że dalszy postęp na tym polu może doprowadzić do stworzenia nowej klasy diod czy tranzystorów, bardziej efektywnych ogniw fotowoltaicznych i innych urządzeń związanych z zarządzaniem energią cieplną.
      Źródło: Observation of Strong Nonreciprocal Thermal Emission, https://arxiv.org/pdf/2501.12947

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na opisywanej przez nas przed kilkunastoma miesiącami planecie hyceańskiej K2-18b odkryto najsilniejsze dotychczas wskazówki mogące świadczyć o istnieniu życia pozaziemskiego. Naukowcy z Uniwersytetu w Cambridge poinformowali właśnie, że dzięki Teleskopowi Webba zauważyli w atmosferze K2-18b sygnały świadczące o istnieniu tam siarczku dimetylu (DMS) i/lub disiarczku dimetylu (DMDS). Na Ziemi związki te powstają wyłącznie w wyniku działania organizmów żywych. To oznacza, że albo na K2-18b istnieje życie, albo zachodzi tam nieznany nauce proces chemiczny, albo... że to fałszywy sygnał.
      W przypadku opisywanych tutaj badań wartość odchylenia standardowego wynosi 3 sigma, co oznacza, że istnienie 0,3-procentowe prawdopodobieństwo, iż zaobserwowany sygnał jest fałszywy. Wartość odchylenia standardowego, od której w nauce ogłaszane jest odkrycie wynosi 5 sigma. Przy tym poziomie prawdopodobieństwo, iż zarejestrowane dane są przypadkowym fałszywym sygnałem wynosi poniżej 0,00006%. Naukowcy z Cambridge mówią, że potrzebują od 16 do 24 godzin obserwacji za pomocą Teleskopu Webba, by (ewentualnie) zwiększyć poziom ufności do 5 sigma.
      K2-18b krąży w ekosferze chłodnego karła K2-18 znajdującego się w odległości 120 lat świetlnych od Ziemi w Gwiazdozbiorze Lwa. Jest ona 8,6 razy bardziej masywna od Ziemi. Rozmiary plasują ją pomiędzy wielkością Ziemi a Neptuna. W Układzie Słonecznym nie istnieje żaden „mini-Neptun”, dlatego słabo rozumiemy takie światy. Jeśli zaś K2-18b jest rzeczywiście planetą hyceańską, jeśli taki typ planet istnieje, mogą być one dobrym celem poszukiwania życia. Tradycyjnie życia poszukiwaliśmy na mniejszych skalistych planetach, jednak atmosfery większych światów hyceańskich jest łatwiej badać, mówił przed kilkunastoma miesiącami Nikku Madhusudhan z Uniwersytetu w Cambridge.
      Termin „planety hyceańskie" został ukuty – na podstawie badań K2-18b – przez naukowców z Uniwersytetu w Cambridge na określenie hipotetycznej klasy planet. Pochodzi od połączenia słów „wodór” (hydrogen) i „ocean”. Oznacza potencjalnie nadające się do zamieszkania gorące planety pokryte oceanami, które posiadają bogatą w wodór atmosferę. Zdaniem brytyjskich uczonych mogą być bardziej powszechne niż planety typu ziemskiego.
      Badacze z Cambridge obserwują K2-18b za pomocą Teleskopu Webba. Już wcześniej za pomocą instrumentów NIRISS i NIRSpec zauważyli sygnały, które mogą pochodzić od siarczku dimetylu. Niedawno potwierdzili je za pomocą instrumentu MIRI. To niezależna linia dowodowa, zdobyta za pomocą instrumentu, którego wcześnie nie wykorzystywaliśmy. Działa on w zakresie fal świetlnych, który nie nakłada się na zakres wcześniej używanych instrumentów. Sygnał jest silny i czytelny, mówi główny autor badań, profesor Nikku Madhusudhan.
      Dotychczas przeprowadzone badania wskazują jednak, że poziom DMS/DMDS w atmosferze K2-18b jest tysiące razy wyższy, niż w atmosferze Ziemi i wynosi ponad 10 części na milion. Wcześniejsze prace teoretyczne wskazywały, że atmosfera planet hyceańskich może być bogata w gazy zawierające siarkę. Nasze obserwacje zgadzają się z teoretycznymi obliczeniami. Biorąc pod uwagę to, co dotychczas wiemy o tej planecie, najbardziej możliwym scenariuszem jest świat hyceański, w którego oceanie istnieje życie, dodaje uczony.
      Naukowiec studzi jednak zapał i podkreśla, że jest zbyt wcześnie, by ogłaszać istnienie życia na egzoplanecie. Może bowiem istnieć nieznany nam proces chemiczny, w wyniku którego powstają DMS i DMDS. Dlatego też chce przeprowadzić eksperymenty i badania teoretyczne, by sprawdzić, czy wspomniane związki mogą powstawać w procesach nie związanych z biologią i w takiej ilości, jak zostały zaobserwowane.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badania próbek asteroidy Bennu dostarczonych na Ziemię przez misję OSIRIS-REx wykazały, że znajdują się tam molekuły, które na Ziemi są niezbędnymi składnikami do powstania życia. Znaleziono też ślady świadczące o obecności słonej wody. Mogła ona być miejscem, w którym dochodziło do interakcji i łączenia się tych molekuł.
      NASA zastrzega, że odkrycie nie jest równoznaczne z odkryciem życia na asteroidzie. Sugeruje ono jednak, że we wczesnym Układzie Słonecznym powszechnie istniały warunki niezbędne do powstania życia, a to zwiększa prawdopodobieństwo znalezienia go na innych ciałach niebieskich.
      Na łamach Nature i Nature Astronomy ukazały się dwa artykuły, w których naukowcy z NASA i innych instytucji – zarówno z USA, jak i Niemiec, Japonii, Francji, Wielkiej Brytanii czy Australii – omawiają wyniki swoich badań.
      W Nature Astronomy zespół prowadzony przez Daniela P. Glavina z NASA informuje, że na asteroidzie zidentyfikowano 14 z 20 podstawowych (kanonicznych) aminokwasów białkowych, z których powstają białkna na Ziemi oraz wszystkie pięć podstawowych zasad azotowych nukleotydów, które ziemskie organizmy żywe wykorzystują do przechowywania i przekazywania informacji genetycznej. Odnotowano też bardzo wysoki poziom amoniaku. Jest on bardzo ważny z punktu widzenia biologii, gdyż reaguje z formaldehydem – również znalezionym w próbkach z Bennu – i w odpowiednich warunkach tworzy bardziej złożone molekuły, jak aminokwasy.
      Wszystkie elementy niezbędne do powstania życia, które znaleziono na Bennu, zidentyfikowano już wcześniej na innych skałach pochodzenia kosmicznego. Tym razem jednak mamy dziewicze próbki pobrane w przestrzeni kosmicznej, co wspiera hipotezę mówiącą, że obiekty, które powstały z dala od Słońca, mogły być waźnym źródłem rozprzestrzeniania się życiodajnych molekuł po Układzie Słonecznym.
      Glavin i jego koledzy szukali molekuł niezbędnych do powstania życia. Tymczasem Tim J. McCoy, kurator zbiorów meteorytów z Narodowego Muzeum Historii Naturalnej, szukał na Bennu informacji o środowisku, w jakim molekuły te powstały. Wraz z zespołem informuje na łamach Nature o znalezieniu 11 minerałów, które powstają, gdy zawierające sole woda odparowuje przez długi czas, pozostawiając po sobie kryształy soli. Podobne co na Bennu solanki prawdopodobnie istnieją na planecie karłowatej Ceres oraz księżycu Saturna, Enceladusie.
      Naukowcy już wcześniej wykrywali na znalezionych na Ziemi meteorytach różne produkty takiego odparowywania, jednak dotychczas nie mieli okazji badać ostatecznych produktów takiego odparowywania trwającego przez tysiące lub więcej lat. Na Bennu znaleziono też kilka minerałów, w tym sodę naturalną, tzw. tronę, których nigdy wcześniej nie zaobserwowano na próbkach pochodzących spoza Ziemi.
      Badania dostarczają wielu nowych informacji, ale pozostawiają bez odpowiedzi liczne pytania. Niemal wszystkie aminokwasy są chiralne, a więc występują w dwóch wariantach, będących swoim lustrzanym odbiciem. Organizmy żywe na Ziemi wykorzystują wyłącznie konformację L- (są lewostronne). Tymczasem na Bennu występowały one w postaci mieszaniny racemicznej, czyli zawierającej równe ilości obu wariantów. To najprawdopodobniej oznacza, że na wczesnej Ziemi aminokwasy również występowały w postaci takich mieszanin. Zatem wciąż jest tajemniczą, dlaczego życie wybrało lewo-, a nie prawostronność.
      Misja OSIRIS-REx została wystrzelona w 2016 roku. W 2020 informowaliśmy, że padła ofiarą własnego sukcesu i pobrała tak dużo próbek, iż pojemnik się nie zamyka, więc NASA musi znaleźć awaryjne rozwiązanie problemu. Próbki trafiły na Ziemię w 2023 roku. W międzyczasie zaś, gdy było wiadomo, że misja OSIRIS-REx z powodzeniem pobrała próbki z Bennu i gdy rozpoczął się powrót pojazdu, specjaliści zaczęli zastanawiać się, co dalej. Plan misji zakładał bowiem od początku, że OSIRIS-REx po uwolnieniu pojemnika z próbkami odleci w kierunku zewnętrznych obszarów Układu Słonecznego. Naukowcy chcieli więc wykorzystać sprawny, posiadający paliwo pojazd. Tym bardziej, że został on zaprojektowany nie do przelotu obok wybranego celu, a do zadań związanych z bliskim spotkaniem i prowadzeniem badań. W końcu zdecydowano, że pojazd poleci do 400-metrowej asteroidy Apophis. Tej samej, która w 2029 roku zbliży się do Ziemi na odległość mniejszą niż satelity na orbicie geosynchronicznej.
      Przemianowana na OSIRIS-APEX misja będzie przez 18 miesięcy towarzyszyła asteroidzie. Co prawda nie pobierze żadnych próbek, ale wykona manewr polegający na podleceniu bardzo blisko i uruchomienie silników, wskutek czego być może uda się odsłonić część tego, co znajduje się pod jej powierzchnią. Naukowcy chcą się dowiedzieć, jaki będzie wpływ fizyczny przyciągania ziemskiego na asteroidę, mają też nadzieję poznać jej skład.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie odkryli wielką galaktykę radiową ze strumieniami plazmy rozciągającymi się na odległość 32-krotnie większą niż średnica Drogi Mlecznej. Kosmiczna megastruktura o średnicy 3,3 miliona lat świetlnych została odkryta przez międzynarodowy zespół astronomów korzystających z południowoafrykańskiego teleskopu MeerKAT. Autorzy badań mają nadzieję, że rzucą one nieco światła na pochodzenie i ewolucję olbrzymich struktur we wszechświecie.
      Wielkie galaktyki radiowe (GRG) to duże struktury wystrzeliwujące w przestrzeń kosmiczną dżety plazmy na odległość milionów lat świetlnych. Strumienie te napędzane są przez supermasywne czarne dziury znajdujące się w centrum galaktyk. Jeszcze do niedawna sądzono, że GRG są dość rzadkie. Jednak nowa generacja radioteleskopów, takich jak MeerKAT, pokazała, jak mylne było to przekonanie. W ciągu ostatnich pięciu lat liczba znanych nam GRG dosłownie eksplodowała, dzięki nowym potężnym teleskopom jak MeerKAT, mówi główna autorka badań, studentka Uniwersytetu w Kapsztadzie Kathleen Charlton.
      Nowo odkryta galaktyka została nazwana nieoficjalnie „Inkathazo”, co w językach zulu i xhosa znaczy „kłopoty”, gdyż naukowcy mieli problemy ze zrozumieniem procesów tam zachodzących. Nie ma ona takich samych charakterystyk jak wiele innych wielkich galaktyk radiowych. Na przykład dżety plazmy mają niezwykły kształt. Zamiast być proste, jeden z nich jest zagięty.
      Inkathazo znajduje się w centrum gromady galaktyk, tymczasem zwykle GRG są izolowane. Gromada powinna przeszkadzać w powstaniu tak rozległych strumieni plazmy. To fascynujące i niespodziewane odkrycie. Znalezienie GRG w gromadzie każe zadać sobie pytania o wpływ interakcji w lokalnym środowisku na formowanie się i ewolucję GRG, dodaje współautor badań, doktor Kshitiji Thorat z Uniwersytetu w Pretorii.
      Naukowcy wykorzystali MeerKAT do stworzenia jednej z najdokładniejszych map GRG. Ujawniły on złożoność dżetów plazmy wydobywających się z galaktyki. Okazało się na przykład, że niektóre elektrony niespodziewanie otrzymują duże dawki energii. Być może dzieje się tak, gdy strumień plazmy zderzy się z gorącym gazem w przestrzeniach pomiędzy galaktykami w gromadzie. Nowe odkrycie to wyzwanie dla obecnie obowiązujących modeli. Pokazuje ono, że nie rozumiemy wielu ze zjawisk fizycznych dotyczących plazmy w tak ekstremalnych środowiskach.
      Co ciekawe, na niewielkim skrawku nieboskłonu, na którym odkryto Inkathazo, wcześniej znaleziono też dwie inne GRG. Sam fakt, że kierując MeerKAT na niewielki skrawek nieba znaleźliśmy tam w sumie 3 GRG sugeruje, że na południowym nieboskłonie znajduje się olbrzymia liczba nieodkrytych jeszcze wielkich galaktyk radiowych, stwierdza doktor Jacinta Delhaize z Uniwersytetu w Kapsztadzie.
      MeerKAT niejednokrotnie dowiódł swoich olbrzymich możliwości, a trzeba pamiętać, że jest on zaledwie prekursorem SKA (Square Kilometre Array), zespołu teleskopów w Australii i RPA. SKA ma rozpocząć badania jeszcze przed końcem obecnej dekady.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...