Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Tajemniczy nadmiar berylu-10. Kosmiczna katastrofa czy zmiana prądów wokół Antarktydy?
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
Opis badań został opublikowany w The Astrophysical Journal Letters.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
Opis badań został opublikowany w The Astrophysical Journal Letters.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
Opis badań został opublikowany w The Astrophysical Journal Letters.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
Opis badań został opublikowany w The Astrophysical Journal Letters.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Nosorożce, które w przeszłości żyły na olbrzymich połaciach Afryki i Azji, obecnie zamieszkują małe enklawy i grozi im wyginięcie. Winny jest człowiek, który zabiera im miejsce do życia i zabija je, by pozyskać rogi na potrzeby tzw. „tradycyjnej medycyny”. Wedle jej wyznawców, rogi leczą wszystko, od kaca i chorób serca po raka. W rzeczywistości zbudowane są z keratyny, więc ich skuteczność w medycynie jest równa obgryzaniu paznokci. Są jednak przekleństwem nosorożców. I to właśnie rogi wzięli na cel naukowcy z Projektu Rhisotope.
Przed 6 miesiącami w rogi 20 nosorożców żyjących w UNESCO Waterberg Biosphere wprowadzono niewielkie ilości materiału promieniotwórczego. Niedawno przeprowadzono badania zwierząt i stwierdzono, że zastosowana ilość promieniotwórczych izotopów im nie zaszkodziła. Jednak rogi zwierząt zostały napromieniowane w wystarczającym stopniu, by można było to wykryć za pomocą sprzętu używanego na granicach. Wykazaliśmy ponad wszelką wątpliwość, że proces ten jest całkowicie bezpieczny dla zwierząt i czyni rogi wykrywalnymi przez systemy celne mające na celu zapobieganiu przemytowi materiałów rozszczepialnych, mówi główny naukowiec Rhisotope Project, profesor James Larkin, dyrektor Katedry Fizyki Promieniowania i Zdrowia na południowoafrykańskim Uniwersytecie Witwatersrand. Poprzez zniszczenie sieci przemytu naukowcy chcą zniechęcić kłusowników do zabijania nosorożców.
Uczeni przetestowali swój pomysł za pomocą wydrukowanego rogu nosorożca. Zrobiono go z materiału o takich samych właściwościach pochłaniających promieniowanie, co keratyna. Następnie symulowano różne drogi przemytu: w walizce, poprzez standardową wysyłkę samolotem, przesyłkę kurierską oraz włożony do kontenera wyładowanego innymi towarami. Za każdym razem wykorzystywane na granicach systemy wykrywały „przemyt”.
Rhisotope Project to organizacja niedochodowa, a przeprowadzenie testów było możliwe dzięki współpracy z Międzynarodową Komisją Energii Atomowej, University of the Witwatersrand, Nuclear Energy Corporation of South Africa, Limpopo Rhino Orphanage oraz UNESCO Waterberg Biosphere. Organizacja chce zabezpieczyć swoją metodą jak najwięcej zwierząt. Dlatego też do osób i organizacji mających pod opieką nosorożce została wystosowana prośba o kontakt, by jak najszybciej zastosować u zwierząt radioizotopy.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.