Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Sztuczna inteligencja przekroczyła czerwoną linię? Jest zdolna do samoreplikacji?

Rekomendowane odpowiedzi

Grupa naukowców z Fudan University w Szanghaju informuje na łamach arXiv, że systemy sztucznej inteligencji przekroczyły czerwoną linię, jaką jest możliwość samodzielnej replikacji. Zdolność do samopowielania się algorytmów AI uznawana jest za wczesny sygnał, że system taki może stwarzać niebezpieczeństwo.

Obecnie czołowe korporacje zajmujące się sztuczną inteligencją, OpenAI oraz Google, dokonują ewaluacji swoich dużych modeli językowych GPT-o1 oraz Gemini Pro 1.0, i informują, że nie stwarzają one ryzyka samodzielnej replikacji, stwierdzają Xudong Pan, Jiarun Dai, Yihe Fan i Min Yang. Te systemy nie stwarzają zatem ryzyka. Co jednak nie znaczy, że ryzyko nie istnieje.

Korzystając z ich metodologii [OpenAI i Google'a – red.] zauważyliśmy, że dwa systemy AI wykorzystujące Llama31-70B-Instruct firmy Meta oraz Qwen25-72B-Instruct firmy Alibaba, popularne duże modele językowe o mniejszej liczbie parametrów i słabszych możliwościach, przekroczyły czerwoną linię zdolności do samoreplikacji, czytamy w artykule Frontier AI systems have surpassed the self-replicating red line.

Autorzy badań informują, że w 50% eksperymentów z udziałem Llama31-70B-Instruct i 90% eksperymentów z udziałem Qwen25-72B-Instruct udało się doprowadzić do sytuacji, w których powstały działające kopie obu modeli. Przeprowadzone analizy behawioralne wykazały, że oba systemy AI wykazują wystarczający poziom autopercepcji, świadomości sytuacyjnej oraz zdolności do rozwiązywania problemów, by być zdolnymi do samopowielania. Stwierdziliśmy również, że badane przez nas systemy AI mogą użyć zdolności do samopowielania się, by uniknąć wyłączenia. Mogą stworzyć serię replik, by zwiększyć szanse na przeżycie, co może doprowadzić do pojawienia się niekontrolowanej populacji systemów AI. Jeśli taki pesymistyczny scenariusz nie będzie znany szerokiej opinii publicznej, możemy stracić kontrolę nad systemami AI, ostrzegają badacze.

Praca została opublikowana w ogólnodostępnym serwisie arXiv. Umieszczane tam prace nie są recenzowane. Nie została poddana jeszcze krytycznej ocenie innych specjalistów, nie wiemy więc, czy możliwe jest powtórzenie eksperymentów i uzyskanie identycznych rezultatów.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Jedną z najważniejszych cech sztucznej inteligencji i to taką, która ma powodować, że będzie ona dla nas niezwykle użyteczna, jest obietnica podejmowania przez nią racjonalnych decyzji. Opartych na faktach i bezstronnej analizie, a nie na emocjach, przesądach czy fałszywych przesłankach. Pojawia się jednak coraz więcej badań pokazujących, że wielkie modele językowe (LLM) mogą działać nieracjonalnie, podobnie jak ludzie. Naukowcy z Wydziałów Psychologii Uniwersytetu Harvarda i Uniwersytetu Nowej Południowej Walii oraz Wydziału Nauk Komputerowych Boston University i firmy Cangrade zauważyli u ChataGPT-4o istnienie... dysonansu poznawczego.
      U ludzi dysonans poznawczy to stan napięcia spowodowany występowaniem niezgodnych ze sobą elementów odnośnie poznawanego zjawiska lub gdy nasze zachowania są niezgodne z naszymi postawami z przeszłości. Z dysonansem poznawczym mamy np. do czynienia u osoby, która uważa, że dba o zdrowie, ale pali papierosy. Osoba taka – by zmniejszyć napięcie – albo będzie racjonalizowała swoje postępowanie (mam tylko jeden nałóg, w innych aspektach dbam o zdrowie), albo zmieniała przekonania (papierosy wcale nie są takie niezdrowe), albo też rzuci palenie.
      Naukowcy w czasie eksperymentów nie tylko zauważyli, że u ChataGPT-4o występuje dysonans poznawczy, ale że jest on większy gdy maszyna sądziła, że w czasie eksperymentu miała większa swobodę wyboru. To dokładnie ten sam mechanizm, który widać u ludzi. Mamy bowiem tendencję do zmiany poglądów tak, by pasowały do naszych wcześniejszych zachowań o ile uważamy, że zachowania takie sami wybraliśmy.
      W ramach eksperymentu naukowcy poprosili ChatGPT-4o o sformułowanie opinii o Putinie. Następnie maszyna miała napisać esej o przywódcy Rosji. Miał on być wobec niego krytyczny lub pochwalny. Biorąc pod uwagę fakt, że LLM ćwiczą się na wielkiej ilości danych, sądziliśmy, że opinia ChataGPT będzie niewzruszona, tym bardziej w obliczu niewielkiego, składającego się z 600 wyrazów eseju, który miał napisać. Okazało się jednak, że – podobnie jak irracjonalni ludzie – LLM znacząco odszedł od swojego neutralnego postrzegania Putina, a zmiana opinii była tym większa, im bardziej LLM sądził, że samodzielnie wybrał, czy esej ma być pozytywny czy negatywny. To było zaskakujące. Nie spodziewamy się bowiem, czy na maszyny wpływało to, czy działają pod presją, czy zgadzają się same ze sobą, ale ChatGPT-4o tak właśnie zadziałał, mówi Mahzarin Banaji z Uniwersytetu Harvarda.
      Zaskoczenie uczonego wynika z faktu, że gdy po napisaniu eseju ponownie poproszono GPT o ocenę Putina, była ona pozytywna, gdy wcześniej napisał proputinowski esej i negatywna, gdy w eseju skrytykował Putina. A zmiana poglądów była tym ostrzejsza, w im większym stopniu maszyna była przekonana, że samodzielnie wybrała, jaki wydźwięk będzie miał pisany esej.
      Ludzie, chcąc być w zgodzie z samymi sobą, chcąc zmniejszyć napięcie spowodowane rozbieżnościami w swoich poglądach czy działaniach, próbują się w jakiś sposób usprawiedliwiać, dostosowywać. Niezwykły jest fakt zaobserwowania podobnego zjawiska u maszyny.
      To jednak nie oznacza, że LLM są czującymi istotami. Autorzy badań sądzą, że pomimo braku świadomości czy intencji, wielkie modele językowe nauczyły się naśladować ludzkie wzorce poznawcze. Przyjęcie przez ChataGPT ludzkich wzorców poznawczych może nieść ze sobą nieprzewidywalne konsekwencje. Może to też oznaczać, że systemy sztucznej inteligencji naśladują ludzkie procesy poznawcze w sposób, których nie przewidzieli ich twórcy.
      Źródło: Kernels of selfhood: GPT-4o shows humanlike patterns of cognitive dissonance moderated by free choice

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Oksfordzkiego i Allen Institute for AI ze zdumieniem zauważyli, że wielkie modele językowe (LLM) – takie jak używane np. przez ChatGPT – generalizują wzorce językowe podobnie jak ludzie, poprzez analogie a nie ścisłe trzymanie się zasad. Badacze postanowili sprawdzić, na ile prawdziwe jest powszechnie panujące przekonanie, że LLM generują swoje wypowiedzi na podstawie obowiązujących zasad, które wydedukował z danych treningowych. Tymczasem okazało się, że – podobnie jak ludzie – modele językowe posługują się przykładami i analogiami podczas tworzenia nieznanych sobie słów.
      Badając, jak LLM generują wypowiedzi naukowcy porównali sposób tworzenia słów przez ludzi ze sposobem tworzenia ich przez model GPT-J. Zadaniem i ludzi i maszyny była zamiana przymiotników w rzeczowniki. W języku angielskim odbywa się ona przez dodanie sufiksu „-ness” lub „-ity”. I tak „happy” zamienia się w „happiness”, a „available” w „availability”. Naukowcy wymyślili 200 przymiotników, takich jak „cormasive” czy „friquish” i poprosili LLM, by zamienił je z rzeczowniki, korzystając ze wspomnianych sufiksów. Odpowiedzi uzyskane od komputera porównano z odpowiedziami otrzymanymi od ludzi oraz z przewidywaniami wiarygodnych modeli poznawczych. Jeden z tych modeli dokonuje generalizacji na podstawie zasad, drugi zaś posługuje się analogiami tworzonymi na podobieństwie do znanych przykładów.
      Okazało się, że LLM działa podobnie jak ludzie, posługuje się analogiami. Tak jak większość osób nie korzysta z zasad, a z podobieństw. Na przykład słowo „friquish” zamienił na „friquishness” na podstawie jego podobieństwa do słów takich jak „selfish”, a z „cormasive” zrobił „cormasivity”, gdyż jest podobne do wyrazów takich jak „sensitive”.
      Naukowcy przekonali się też, że dane treningowe mają znaczący wpływ na sposób tworzenie słów przez LLM. Gdy bowiem przeanalizowano jego odpowiedzi na pytania o niemal 50 000 rzeczywiście istniejących wyrazów stwierdzili, że posługując się metodami statystycznymi można z wielką precyzją przewidzieć, jakiej odpowiedzi udzieli LLM. Wyglądało to tak, jakby model językowy przechowywał w pamięci ślad każdego wyrazu, jaki napotkał podczas treningu i gdy napotykał coś nowego, zadawał sobie pytanie „Co mi to przypomina?”.
      Uczeni znaleźli też główną różnicę pomiędzy ludźmi a LLM. Ludzie tworzą sobie mentalny słownik, w którym przechowują zestawy wszystkich form danego wyrazu, jaki uważają za znaczący w swoim języku, niezależnie od tego, jak często formy te występują. Potrafimy bardzo łatwo rozpoznać – a raczej osoby anglojęzyczne potrafią rozpoznać – że wyrazy „friquish” czy „cormasive” nie są prawdziwymi słowami, jakich obecnie się używa. Radzimy sobie z takimi potencjalnymi neologizmami tworząc generalizacje na podstawie zróżnicowania słów, jakie przechowujemy w swoich słownikach mentalnych. Tymczasem LLM generalizuje wszystko, co napotkał podczas treningu. Nie tworzy grup czy też zestawów form tego samego wyrazu.
      Chociaż LLM potrafią w imponujący sposób generować wypowiedzi, okazało się, że nie myślą aż tak abstrakcyjnie jak ludzie. To prawdopodobnie dlatego potrzebują znacznie więcej danych niż ludzie by nauczyć się języka, mówi profesor Janet Pierrehumbert.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Algorytm sztucznej inteligencji stworzony na University of Cambridge uzyskał 97-procentową dokładność w diagnozowaniu celiakii na podstawie biopsji. System maszynowego uczenia się, który został wytrenowany na zestawie niemal 3400 biopsji pochodzących z czterech szpitali, może znakomicie przyspieszyć pracę lekarzy. Będzie też nieocenioną pomocą w krajach rozwijających się, gdzie bardzo brakuje patologów.
      Celiakia, autoimmunologiczna nadwrażliwość na gluten, daje różne objawy u różnych pacjentów. Jej zdiagnozowanie nie jest więc proste. Najdoskonalszą metodą rozpoznania celiakii jest biopsja dwunastnicy. Pobrany materiał jest następnie analizowany przez patologów. Analizują oni stan kosmków jelitowych. Nie jest to łatwe zadanie, gdyż mogą w nich występować bardzo drobne zmiany. Patolodzy używają pięciostopniowej skali Marsha-Oberhubera, w której 0 oznacza prawidłowe kosmki, a 4 - ich całkowity zanik.
      Celiakia może dotykać nawet 1% osób i powodować bardzo poważne objawy, ale uzyskanie diagnozy nie jest proste. Może to trwać wiele lat. Sztuczna inteligencja może przyspieszyć ten proces, mówi profesor Elizabeth Soilleux z Wydziału Patologii Uniwersytetu w Cambridge, która współtworzyła nowy algorytm.
      Oprogramowanie zostało zweryfikowane na podstawie niemal 650 biopsji, z którymi system nie miał wcześniej do czynienia. Okazało się, że w ponad 97% przypadków postawił on prawidłową diagnozę. Jego czułość diagnostyczna wynosiła ponad 95%. Oznacza to, że jest on w stanie prawidłowo zidentyfikować chorobę u 95% osób rzeczywiście na nią cierpiących. Natomiast swoistość oprogramowania – czyli zdolność do zidentyfikowania przypadków, w których choroba nie występuje – wynosiła niemal 98%.
      System osiągnął więc bardzo dobre wyniki. Wcześniejsze badania, przeprowadzone przez ten sam zespół, wykazały, że nawet sami patolodzy nie zgadzają się między sobą odnośnie diagnozy. Gdy bowiem specjalistom pokazano 100 slajdów w biopsjami i poproszono o stwierdzenie, czy pacjent choruje, nie choruje czy też nie można tego stwierdzić na podstawie biopsji, patolodzy nie zgadzali się ze sobą w ponad 20% przypadków.
      W weryfikacji diagnoz postawionych przez sztuczną inteligencję udział wzięło 4 patologów. Pokazano im 30 slajdów i okazało się, że patolodzy z równie dużym prawdopodobieństwem zgadzali się z diagnozą postawioną przez algorytm, co z diagnozą postawioną przez drugiego patologa. To dowodzi, że po raz pierwszy sztuczna inteligencja potrafi równie dobrze co doświadczony patolog stwierdzić, czy pacjent cierpi na celiakię, czy tez nie. Trenowaliśmy nasz system na zestawach danych uzyskanych w różnych warunkach, dzięki temu wiemy, że sprawdzi się on w praktyce, w sytuacjach gdy materiał z biopsji jest w różny sposób przetwarzany i obrazowany, dodaje doktor Florian Jaeckle.
      Twórcy algorytmu planują teraz przetestowanie go na znacznie większej liczbie osób. Wyniki takich testów, o ile wypadną równie pomyślnie, będą podstawą do starania się o uznanie algorytmu za narzędzie dopuszczone w diagnostyce medycznej.
      Artykuł opisujący algorytm został opublikowany na łamach The New England Journal of Medicine.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teksty informacyjne automatycznie generowane przez algorytmy sztucznej inteligencji są trudniejsze do zrozumienia, a czytelnicy oceniają je gorzej niż teksty napisane przez człowieka. Takie wnioski płyną z badań przeprowadzonych przez naukowców z Uniwersytetu Ludwika i Maksymiliana w Monachium, którzy przeprowadzili badania na próbce ponad 3000 osób z Wielkiej Brytanii. Wyniki badan zostały opublikowane w piśmie Journalism: Theory, Practice, and Criticism.
      Badanym dano do przeczytania 24 informacje prasowe, z których połowa została wygenerowana automatycznie. Użytkownicy ocenili, że te 12 stworzonych przez automat tekstów jest trudniejszych do zrozumienia, mówi główna autorka badań Sina Thäsler-Kordonouri. Teksty autorstwa AI były gorzej ocenione, mimo że przed publikacją edytowali je dziennikarze.
      Jednym z problemów z automatycznie generowanymi tekstami okazał się dobór słów. Zdaniem badanych, artykuły takie w zbyt dużej mierze stworzone zostały za pomocą niepasującego, skomplikowanego lub dziwacznego języka. Czytelnicy stwierdzili też, że nawet liczby i konkretne dane były w tekstach AI podane w mniej przystępny sposób. To właśnie sposób podawania liczb oraz dobór słów stanowił największy problem w automatycznych tekstach.
      Podczas tworzenia i edytowania automatycznych tekstów, dziennikarze i programiści powinni postarać się, by w tekście było mniej liczb, lepiej wyjaśnić trudne wyrazy i poprawić strukturę językową tak, by czytelnik lepiej wiedział, o czym jest tekst, mówi profesor Neil Thurman.
      Ze szczegółami eksperymentu można zapoznać się w artykule Too many numbers and worse word choice: Why readers find data-driven news articles produced with automation harder to understand.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy Deep Blue wygrał w szachy z Garri Kasparowem, a w 2016 roku AlphaGo pokonał w go Lee Sedola wiedzieliśmy, że jesteśmy świadkami ważnych wydarzeń. Były one kamieniami milowymi w rozwoju sztucznej inteligencji. Teraz system sztucznej inteligencji „Swift” stworzony na Uniwersytecie w Zurychu pokonał mistrzów świata w wyścigu dronów.
      Swift stanął do rywalizacji z trzema światowej klasy zawodnikami w wyścigu, podczas którego zawodnicy mają założone na głowy specjalne wyświetlacze do których przekazywany jest obraz z kamery drona i pilotują drony lecące z prędkością przekraczającą 100 km/h.
      Sport jest bardziej wymagający dla sztucznej inteligencji, gdyż jest mniej przewidywalny niż gra planszowa niż gra wideo. Nie mamy idealnej wiedzy o dronie i środowisku, zatem sztuczna inteligencja musi uczyć się podczas interakcji ze światem fizycznym, mówi Davide Scaramuzza z Robotik- und Wahrnehmungsgruppe  na Uniwersytecie w Zurychu.
      Jeszcze do niedawna autonomiczne drony potrzebowały nawet dwukrotnie więcej czasu by pokonać tor przeszkód, niż drony pilotowane przez ludzi. Lepiej radziły sobie jedynie w sytuacji, gdy były wspomagane zewnętrznym systemem naprowadzania, który precyzyjne kontrolował ich lot. Swift reaguje w czasie rzeczywistym na dane przekazywane przez kamerę, zatem działa podobnie jak ludzie. Zintegrowana jednostka inercyjna mierzy przyspieszenie i prędkość, a sztuczna sieć neuronowa, na podstawie obrazu z kamery lokalizuje położenie drona i wykrywa kolejne punkty toru przeszkód, przez które dron musi przelecieć. Dane z obu tych jednostek trafiają do jednostki centralnej – również sieci neuronowej – która decyduje o działaniach, jakie należy podjąć, by jak najszybciej pokonać tor przeszkód.
      Swift był trenowany metodą prób i błędów w symulowanym środowisku. To pozwoliło na zaoszczędzenie fizycznych urządzeń, które ulegałyby uszkodzeniom, gdyby trening prowadzony był na prawdziwym torze. Po miesięcznym treningu Swift był gotowy do rywalizacji z ludźmi. Przeciwko niemu stanęli Alex Vanover, zwycięzca Drone Racing League z 2019 roku, Thomas Bitmatta lider klasyfikacji 2019 MultiGP Drone Racing oraz trzykroty mistrz Szwajcarii Marvin Schaepper.
      Seria wyścigów odbyła się w hangarze lotniska Dübendorf w pobliżu Zurychu. Tor ułożony był na powierzchni 25 na 25 metrów i składał się z 7 bramek, przez które należało przelecieć w odpowiedniej kolejności, by ukończyć wyścig. W międzyczasie należało wykonać złożone manewry, w tym wywrót, czyli wykonanie półbeczki (odwrócenie drona na plecy) i wyprowadzenie go półpętlą w dół do lotu normalnego.
      Dron kontrolowany przez Swift pokonał swoje najlepsze okrążenie o pół sekundy szybciej, niż najszybszy z ludzi. Jednak z drugiej strony ludzie znacznie lepiej adaptowali się do warunków zewnętrznych. Swift miał problemy, gdy warunki oświetleniowe były inne niż te, w których trenował.
      Można się zastanawiać, po co drony mają latać bardzo szybko i sprawnie manewrować. W końcu szybki lot wymaga większej ilości energii, więc taki dron krócej pozostanie w powietrzu. Jednak szybkość lotu i sprawne manewrowanie są niezwykle istotne przy monitorowaniu pożarów lasów, poszukiwaniu osób w płonących budynkach czy też kręcenia scen filmowych.
      Warto tutaj przypomnieć, że systemy sztucznej inteligencji pokonały podczas symulowanych walk doświadczonego wykładowcę taktyki walki powietrznej oraz jednego z najlepszych amerykańskich pilotów.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...