Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Atlantycka Południkowa Cyrkulacja Wymienna nie osłabła, stwierdzają autorzy nowych badań

Rekomendowane odpowiedzi

Zdecydowaną większość powierzchni Ziemi pokrywają oceany. Nic więc dziwnego, że mają one kolosalny wpływ na naszą planetę. AMOC (Atlantycka Południkowa Cyrkulacja Wymienna) to najważniejszy system prądów morskich na Atlantyku. Bierze on udział w dystrybucji ciepła, wilgotności, składników odżywczych, wpływa na klimat i pogodę. Jako, że klimat się ociepla, wielu naukowców obawia się, że roztapiające się lody Arktyki doprowadzą do osłabienia lub zatrzymania AMOC. Jego osłabienie miałoby poważne konsekwencje, zatrzymanie – byłoby prawdziwą katastrofą.

Badania na temat długoterminowej przyszłości AMOC są obarczone dużą dozą niepewności. Dlatego naukowcy z Woods Hole Oceanographic Institution (WHOI) postanowili zbadać nie przyszłość, a przeszłość AMOC, by w ten sposób spróbować dowiedzieć się, co może nas czekać.

Z artykułu opublikowanego na łamach Nature Communications dowiadujemy się, że w ciągu ostatnich 60 lat nie doszło do osłabnięcia AMOC. To może oznaczać, że system jest bardziej stabilny, niż sądzono. Atlantycka Południkowa Cyrkulacja Wymienna jeszcze nie osłabła. To nic nie mówi o przyszłości, ale nic nie wskazuje, by do przewidywanych zmian już doszło, mówi Nicholas P. Foukal z WHOI.

Uzyskane obecnie wyniki stoją w sprzeczności z wcześniejszymi badaniami, szczególnie z roku 2018, którego autorzy informowali, że AMOC osłabł w ciągu ostatnich 70 lat. Praca ta opierała się na pomiarach temperatury wód powierzchniowych. Autorzy obecnych badań stwierdzają: dowiedzieliśmy się, że temperatura powierzchni oceanu nie jest tak dobrym wskaźnikiem, jak się wydawało.

Uczeni wykorzystali 24 różne modele klimatyczne i na ich podstawie stwierdzili, że temperatury powierzchni wody nie pozwalają na dokładną rekonstrukcję tego, co dzieje się z AMOC. Przyjrzeli się więc wymianie ciepła pomiędzy oceanem a atmosferą. Gdy AMOC jest silniejszy, uwalnia do atmosfery więcej ciepła w północnej części Atlantyku. Gdy przeanalizowali dane i modele klimatyczne pod tym kątem stwierdzili, że AMOC jest bardziej stabilny niż sądziliśmy. To może oznaczać, że – wbrew temu co wcześniej sugerowano – nie zbliża się on do punktu zwrotnego, mówi Linus Vogt z Laboratorium Oceanografii i Klimatu na Sorbonie.

Autorzy nowych badań informują, że ze stanem AMOC ściśle powiązane są anomalie przepływu ciepła pomiędzy oceanem a atmosfera na północnym Atlantyku oraz, że dekadowa średnia AMOC nie zmniejszyła się w latach 1963–2017. Istnieje wiele procesów, które wpływają na dużą roczną zmienność AMOC, jednak w skalach dekad najsilniejsza jest korelacja pomiędzy tą cyrkulacją a wymianą ciepła między oceanem a atmosferą.

Obecnie istnieje niemal pełna zgoda co do tego, że w przyszłości AMOC osłabnie, ale istnieje spór co do tego, czy się załamie. Nasze badania pokazują, że mamy jeszcze czas przed osiągnięciem punktu zwrotnego, dodaje Foukal.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Mamy pierwsze bezpośrednie dowody świadczące o stabilizowaniu się Wiru Morza Beauforta, największego rezerwuaru słodkiej wody na Oceanie Arktycznym. Wir to system prądów morskich, które tworzą na powierzchni oceanu gigantyczny bąbel słodkiej wody z topniejącej pokrywy lodowej i syberyjskich rzek. Poziom morza w rejonie wiru jest o 15 centymetrów wyższy, niż otaczających go wód. Przed 12 lat szacowano, że objętość bąbla wynosi ok. 8000 km3. Stabilizacja wiru może zapowiadać rozlanie się tej wody po Oceanie Arktycznym i Atlantyckim, co może znacząco zakłócić Atlantycką Południkową Cyrkulację Wymienną (AMOC), która zapewnia Europie łagodny klimat. Mogą czekać nas mroźne zimy i upalne lata.
      Dotychczasowe dane, zawierające informacje do roku 2014, wskazywały, że Wir Morza Beauforta wzmacnia się i od lat 70. zawartość słodkiej wody wzrosła w nim o 40%. Najnowsze dane satelitarne z lat 2011–2019, uzupełnione o dane hydrograficzne z lat 2003–2019 wskazują na stabilizowanie się Wiru. Wir Morza Beauforta przeszedł do fazy kwazi-stabilnej, w której wzrost wysokości wód wiru spowolnił, a jego objętość nie zwiększa się. Dodatkowo zima warstwa halokliny [to warstwa przejściowa wód pomiędzy wodą mniej słoną nad nią i bardziej słoną pod nią – red.], która izoluje wody Atlantyku, stała się znacząco cieńsza w związku z mniejszym wpływaniem zimnych słonych wód z Pacyfiku i szelfu Morza Czukczów, jednocześnie zaś ze wschodniego Morza Beauforta wpływa więcej lżejszych wód. Ostatnie zmiany Wiru Morza Beauforta są związane z jego przesunięciem się na południowy-wschód w wyniku zmian w rozkładzie wiatrów, stwierdzają naukowcy. Ich zdaniem, jeśli haloklina nadal będzie stawała się coraz cieńsza, słodka woda z Wiru rozleje się po Północnym Atlantyku, wpływając na AMOC.
      Ludzie powinni zdawać sobie sprawę, że zmiany w cyrkulacji na Oceanie Arktycznym mogą zaburzyć klimat. Problemem nie są tylko topniejące lody czy utrata habitatów przez zwierzęta, mówi główny autor badań, Peigen Lin z Wydziału Oceanografii Uniwersytetu Shanghai Jiao Tong, który swoje badania prowadził na Woods Hole Oceanographic Institution.
      Naukowcy zwracają uwagę, że obecna sytuacja nie jest podobna do tej z 2003 roku, gdy Wir zmniejszył powierzchnię i częściowo przesunął się na południowy-wschód. Wtedy objętość wiru rosła. Obecnie przestała rosnąć, a haloklina staje się coraz cieńsza. Wskazuje to, że w 2. dekadzie bieżącego wieku doszło do stabilizacji Wiru.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zespół naukowców, inżynierów i marynarzy ze statku badawczego Neil Armstrong należącego do US Navy, którego operatorem jest Woods Hole Oceanographic Institution (WHOI), pobrał 11,5-metrowy rdzeń osadów z najgłębszej części Rowu Portorykańskiego. Osady zostały pozyskane z głębokości ponad 8000 metrów. To rekord po względem głębokości, z jakiej pozyskano rdzeń na Atlantyku, a może i rekord w ogóle.
      Zespołowi naukowemu z WHOI, Uniwersytetu w Monachium i kilku amerykańskich uniwersytetów, przewodzili profesor Steven D'Hondt oraz doktor Robert Pockalny. Celem wyprawy badawczej, która prowadzona była w lutym i marcu bieżącego roku, było lepsze zrozumienie adaptacji mikroorganizmów do życia w morskich osadach na różnych głębokościach. Dlatego też uczeni pobierali próbki zarówno z głębokości 50 metrów, jak i około 8358 metrów. Pobieraliśmy próbki, gdyż chcemy się dowiedzieć, jak mikroorganizmy żyjące na dnie morskim radzą sobie z ciśnieniem. Naszym ostatecznym celem jest zrozumienie interakcji pomiędzy organizmami żyjącymi w ekstremalnych środowiskach a ich otoczeniem, wyjaśnia D'Hondt.
      Pobranie rdzenia z tak dużej głębokości było możliwe dzięki specjalnemu systemowi opracowanemu już w 2007 roku przez Jima Brodę dla statku badawczego Knorr. Po tym, jak Knorr zakończył służbę, jego system został zaadaptowany do krótszego Neila Armstronga.
      Po zakończeniu obecnych badań system do pozyskiwania rdzeni z tak dużej głębokości zostanie przekazany OSU Marine Sediment Sampling Group. To zespół finansowany przez Narodową Fundację Nauki, który pomaga amerykańskiej społeczności akademickiej w pobieraniu próbek osadów morskich. Dzięki temu system będzie dostępny dla całej amerykańskiej floty statków badawczych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od ostatnich 30 lat Biegun Południowy ociepla się ponadtrzykrotnie szybciej niż średnia globalna, wynika z badań przeprowadzonych przez profesora Ryana Fogta i Kyle'a Clema z Ohio State University. Naukowcy informują, że ocieplanie to jest głównie powodowane przez naturalną zmienność klimatu i dodatkowo wzmacniane przez emisję gazów cieplarnianych.
      Clem, który obecnie pracuje na nowozelandzkim Victoria University, mówi, że zawsze pasjonowała go pogoda, jej potęga i nieprzewidywalność. Dzięki pracy z Ryanem nauczyłem się wszystkiego o klimacie Antarktyki i półkuli południowej. Przede wszystkim zaś dowiedziałem się wiele o Antarktyce Zachodniej, jego ocieplaniu się, topnieniu lodu i wzrostu poziomu oceanów. Antarktyka doświadcza jednych z największych ekstremów i zmienności pogodowych na planecie, a w powodu jej izolacji, bardzo niewiele o tym kontynencie wiemy. Co roku zaskakuje nas czymś nowym, mówi Clem.
      Wiemy, że przez cały XX wiek większość Antarktyki Zachodniej oraz Półwysep Antarktyczny ogrzewały się i dochodziło do utraty lodu. Jednocześnie zaś Biegun Południowy, znajdujący się w odległym wysoko położonym regionie, ochładzał się aż do lat 80. ubiegłego wieku. Od tamtej pory znacząco się ocieplił.
      Clem i jego zespół przeanalizowali dane ze stacji pogodowej na Biegunie Południowym oraz wykorzystali modele klimatyczne do zbadania mechanizmu ocieplania się wnętrza Antarktyki. Okazało się, że w latach 1989–2018 Biegun Południowy ocieplił się o 1,8 stopnia Celsjusza. Średnie tempo ogrzewania wynosiło więc 0,6 stopnia na dekadę, było więc trzykrotnie większe niż średnia globalna w tym czasie.
      Autorzy badań stwierdzili, że ogrzewanie się wnętrza Antarktyki jest spowodowane głównie przez tropiki, szczególnie zaś przez wysokie temperatury wód oceanicznych zachodniego Pacyfiku, które doprowadziły do zmiany rozkładu wiatrów na Południowym Atlantyku, przez co zwiększył się transport ciepłego powietrza nad Biegun Południowy. Te zmiany na południowym Atlantyku to, zdaniem uczonych, ważny mechanizm powodujący anomalie klimatyczne we wnętrzu Antarktyki.
      Zdaniem Clema i Fogta, ogrzewanie się wnętrza kontynentu, mimo iż sam mechanizm zmian jest naturalny, nie miałoby miejsca gdyby nie działalność człowieka. Naturalny mechanizm, czyli zmiana układu wiatrów u atlantyckich wybrzeży Antarktyki spowodowana przez temperatury wód na zachodnim Pacyfiku, został bowiem bardzo wzmocniony przez emisję gazów cieplarnianych, przez którą wody Pacyfiku są wyjątkowo gorące.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy informuje o znalezieniu największej w historii liczbie kawałków mikroplastiku zalegającej na dnie morskim. W cienkiej warstwie osadów na Morzu Tyrreńskim naliczono aż 1,9 miliona fragmentów mikroplastiku na metr kwadratowy.
      Każdego roku do oceanów trafia ponad 10 milionów ton plastikowych odpadków. Plastik pływa po oceanach, jest wyrzucany na plaże, tworzy Wielką Pacyficzną Plamę Śmieci. Jedak te widoczne gołym okiem odpady to zaledwie 1% plastikowych śmieci, które każdego roku wprowadzamy do oceanów. Pozostałych 99% pnie widzimy, gdyż śmieci te znajdują się w głębokich warstwach wody.
      Naukowcy z Uniwersytetu w Manchesterze, brytyjskiego Narodowego Centrum Oceanografii, Uniwersytetu w Durham, francuskiego IFREMER oraz Uniwersytetu w Bremie poinformowali na łamach Science, że głębokie prądy oceaniczne transportują niewielkie fragmenty plastiku i włókna po całym dnie oceanicznym. Prądy te mogą też prowadzić do koncentracji olbrzymich ilości plastiku w osadach morskich, tworząc na dnie odpowiednik wielkich plam śmieci znanych z powierzchni oceanów.
      Niemal wszyscy słyszeli o plamach śmieci pływających po oceanach. Byliśmy jednak zaszokowani odkryciem, że głęboko na dnie morskim również dochodzi do takiej koncentracji plastiku. Odkryliśmy, że mikroplastik nie jest równomiernie rozpowszechniony na badanym przez nas obszarze. Potężne prądy morskie prowadzą do jego koncentracji w pewnych miejscach, mówi doktor Ian Kane, główny autor badań.
      Plastik jest transportowany na dno powoli przez prądy morskie lub też gwałtownie, przez prądy zawiesinowe. Gdy już znajdzie się na dnie jest unoszony przez prądy denne, które prowadzą do jego koncentracji w określonych obszarach. Prądy te niosą również tlen i składniki odżywcze, co oznacza, że miejsca koncentracji mikroplastiku znajdują się w ważnych obszarach dla ekosystemu. Tam plastik ten jest wchłaniany  przez organizmy morskie i wędruje w górę łańcucha pokarmowego, trafiając w końcu do naszych organizmów.
      Odkrycie, że na dnie morskim dochodzi do koncentracji mikroplastiku pozwoli z jednej strony zidentyfikować takie miejsca, z drugiej zaś ułatwi badania nad wpływem mikroplastiku na morskie ekosystemy.
      Niestety plastik stał się nowym typem osadów, który jest transportowany po dnie morskim wraz z piaskiem, mułem i składnikami odżywczymi, mówi doktor Florian Pohl z Durham University.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy od 2014 roku doszło do ustabilizowania się, a nawet do niewielkiego wzrostu, dostaw gęstych antarktycznych wód z dna oceanu do Atlantyku. Przez wiele lat dostawy tych wód się zmniejszały. Nowe badania wykazały, że od 2014 roku sytuacja się stabilizuje, a nawet nieco poprawia. Będzie to miało wpływ na klimat całej planety.
      Woda morska, która po dotarciu do Antarktyki ulega schłodzeniu, zanurza się pod cieplejsze warstwy i opada na dno, tworząc głębinowe wody antarktyczne (AABW). Są one obecne we wszystkich oceanach i stanowią w nich największą objętościowo masę wody. Szacuje się, że to wody położone głębiej niż 2000 metrów pochłonęły aż 1/6 energii zgromadzonej w systemie klimatycznym planety. Od wielu dekad obserwuje się jednak, że ilość najgęstszych frakcji tej wody zmniejsza się w Morzu Scotia, które jest z kolei kluczową bramą dla wód z Morza Weddela w kierunku światowego oceanu.
      Badacze z British Antarctic Survey przyjrzeli się danym z lat 1989–2018 zebranym podczas pomiarów temperatury i zasolenia wód, które zostały wykonane przez brytyjskie, niemieckie i amerykańskie wyprawy naukowe. Zmiany na Morzu Scotia połączyli ze zmianami na Morzu Weddella, związanymi prawdopodobnie ze zmianami w rozkładzie wiatrów, formowaniu się lodu morskiego i napływie wody z lodowców Antarktydy.
      Badania te rzucają światło na związek pomiędzy głębokimi partiami Oceanu Południowego, a całą cyrkulacją oceaniczną, który zapobiega szybkiemu ocieplaniu się klimatu dzięki uwięzieniu znacznych ilości antropogenicznego węgla w głębi oceanu. Zmniejszenie gęstości głębokich wód oceanicznych, co jest spowodowane przez wyższe temperatury i zwiększone topnienie lodu, prowadzi do osłabienia tej cyrkulacji, co ma wpływ na klimat.
      Głębokie partie wód oceanicznych ocieplają się od wielu dekad na całym świecie. Byliśmy więc zaskoczeni, gdy nagle stwierdziliśmy odwrócenie i ustabilizowanie się tego trendu na Morzu Scotia. Nie wiemy, czy oznacza to odwrócenie trendów czy jedynie jest to chwilowa przerwa w obserwowanych trendach, wiemy, że musimy lepiej zrozumieć procesy, którym podlegają masy wody w pobliżu Antarktyki, mówi doktor Povl Abrahamsen, główny autor badań.
      Współautor badań, doktor Kurt Polzin z Woods Hole Oceanographic Institution, dodaje: Morze Scotia to unikatowy region, gdyż zachodzą w nim liczne fizyczne mechanizmy, które powodują, że gęste wody stają się lżejsze na dość niewielkim obszarze południowej części tego morza. Ten niewielki basen pozwala nam na badanie olbrzymich mas wody i zachodzących zmian w okresach rocznych. W innych miejscach musielibyśmy prowadzić badania w skali dekad.
      Z kolei doktor Andrew Meijers podkreśla, że po raz pierwszy udało się zaobserwować tak znaczące zmiany w tych głęboko położonych wodach, zachodzące w tak krótkim czasie. To pokazuje, że głęboki ocean może ulegać szybszym zmianom, niż sądzono. To sugeruje, że zmiany klimatyczne na dużą skalę, które dotyczą Antarktyki i Oceanu Południowego, mogą niespodziewanie się odwrócić, co ma duże znaczenie na skalę globalną, dodaje profesor Alberto Naveira Garabato z University of Southampton.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...