Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Tajemnicze eksplozje w kosmosie stały się jeszcze bardziej tajemnicze
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Japońska firma Air Water chce wytwarzać paliwo rakietowe z... krowich odchodów. Jeśli się uda, powstałoby bardziej ekologiczne paliwo, niż używane obecnie, rolnicy zyskaliby dodatkowe źródło dochodu i nie musieliby się martwić pozbywaniem się odchodów. Produkowane przez Japończyków biopaliwo ma zostać przetestowane w ciągu najbliższych miesięcy. Będzie nim napędzana rakieta startupu Interstellar Technologies.
Air Water produkuje płynny biometan od 2021 roku. Najpierw odchody krów są poddawane fermentacji w specjalnej instalacji znajdującej się na terenie jednej z farm mlecznych. Powstaje biogaz, który jest transportowany do kolejnej fabryki. Tam oddziela się od niego metan, który następnie jest schładzany do postaci płynnej.
Obecnie wysokiej jakości metan do silników rakietowych uzyskuje się z ciekłego gazu ziemnego. Japończycy twierdzą, że są w stanie uzyskać paliwo podobnej jakości z krowich odchodów. Wkrótce Air Water dzięki współpracy z Interstellar Technologies będzie miało okazję pokazać, czy rzeczywiście ich biometan może napędzać rakiety kosmiczne. Chcemy wysłać w kosmos rakietę, wykorzystując przy tym energię neutralną pod względem emisji węgla, mówią przedstawiciele firmy.
Na Hokkaido hodowla bydła prowadzona jest na szeroką skalę. Dlatego też od dawna poszukuje się tam sposobów na zagospodarowanie odpadów. Na wyspie działają dziesiątki elektrowni na biometan, jednak są one w stanie wykorzystać jedynie niewielką część powstających nieczystości. Paliwo rakietowe z odchodów byłoby kolejnym sposobem na pozbycie się kłopotliwych odpadów.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ekosfera jest tradycyjnie definiowana, jako odległość pomiędzy gwiazdą, a planetą, która umożliwia istnienie wody w stanie ciekłym na planecie. To obszar wokół gwiazdy, w którym na znajdujących się tam planetach może istnieć życie. Jednak grupa naukowców z University of Georgia uważa, że znacznie lepsze byłoby określenie „ekosfery fotosyntezy”, czyli wzięcie pod uwagi nie tylko możliwości istnienia ciekłej wody, ale również światła, jakie do planety dociera z gwiazdy macierzystej.
O życiu na innych planetach nie wiemy nic pewnego. Jednak poglądy na ten temat możemy przypisać do jednej z dwóch szkół. Pierwsza z nich mówi, że na innych planetach ewolucja mogła znaleźć sposób, by poradzić sobie z pozornie nieprzekraczalnymi barierami dla życia, jakie znamy z Ziemi. Zgodnie zaś z drugą, życie w całym wszechświecie ograniczone jest uniwersalnymi prawami fizyki i może istnieć jedynie w formie podobnej do życia na Ziemi.
Naukowcy z Georgii rozpoczęli swoje badania od przyznania racji drugiej ze szkół i wprowadzili pojęcie „ekosfery fotosyntezy”. Znajdujące się w tym obszarze planety nie tylko mogą utrzymać na powierzchni ciekłą wodę – zatem nie znajdują się ani zbyt blisko, ani zbyt daleko od gwiazdy – ale również otrzymują wystarczająca ilość promieniowania w zakresie od 400 do 700 nanometrów. Promieniowanie o takich długościach fali jest na Ziemi niezbędne, by zachodziła fotosynteza, umożliwiające istnienie roślin.
Obecność fotosyntezy jest niezbędne do poszukiwania życia we wszechświecie. Jeśli mamy rozpoznać biosygnatury życia na innych planetach, to będą to sygnatury atmosfery bogatej w tlen, gdyż trudno jest wyjaśnić istnienie takiej atmosfery bez obecności organizmów żywych na planecie, mówi główna autorka badań, Cassandra Hall. Pojęcie „ekosfery fotosyntezy” jest zatem bardziej praktyczne i dające szanse na znalezienie życia, niż sama ekosfera.
Nie możemy oczywiście wykluczyć, że organizmy żywe na innych planetach przeprowadzają fotosyntezę w innych zakresach długości fali światła, jednak istnieje pewien silny przekonujący argument, że zakres 400–700 nm jest uniwersalny. Otóż jest to ten zakres fal światła, dla którego woda jest wysoce przezroczysta. Poza tym zakresem absorpcja światła przez wodę gwałtownie się zwiększa i oceany stają się dla takiego światła nieprzezroczyste. To silny argument za tym, że oceaniczne organizmy w całym wszechświecie potrzebują światła w tym właśnie zakresie, by móc prowadzić fotosyntezę.
Uczeni zauważyli również, że życie oparte na fotosyntezie może z mniejszym prawdopodobieństwem powstać na planetach znacznie większych niż Ziemia. Planety takie mają bowiem zwykle bardziej gęstą atmosferę, która będzie blokowała znaczną część światła z potrzebnego zakresu. Dlatego też Hall i jej koledzy uważają, że życia raczej należy szukać na mniejszych, bardziej podobnych do Ziemi planetach, niż na super-Ziemiach, które są uważane za dobry cel takich poszukiwań.
Badania takie, jak przeprowadzone przez naukowców z University of Georgia są niezwykle istotne, gdyż naukowcy mają ograniczony dostęp do odpowiednich narzędzi badawczych. Szczegółowe plany wykorzystania najlepszych teleskopów rozpisane są na wiele miesięcy czy lat naprzód, a poszczególnym grupom naukowym przydziela się ograniczoną ilość czasu. Dlatego też warto, by – jeśli ich badania polegają na poszukiwaniu życia – skupiali się na badaniach najbardziej obiecujących obiektów. Tym bardziej, że w najbliższych latach ludzkość zyska nowe narzędzia. Od 2017 roku w Chile budowany jest europejski Extremely Large Telescope (ELT), który będzie znacznie bardziej efektywnie niż Teleskop Webba poszukiwał tlenu w atmosferach egzoplanet. Z kolei NASA rozważa budowę teleskopu Habitable Exoplanet Observatory, który byłby wyspecjalizowany w poszukiwaniu biosygnatur na egzoplanetach wielkości Ziemi. Teleskop ten w 2035 roku miałby trafić do punktu L2, gdzie obecnie znajduje się Teleskop Webba.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W odległości 180 milionów lat świetlnych od Ziemi miało miejsce wydarzenie, jakiego wcześniej nie obserwowano. Doszło tam do niezwykle rzadkiej eksplozji FBOT (Fast Optical Blue Transient), która do tego była bardzo płaska. Dotychczas zarejestrowano zaledwie 4 FBOT. Pierwszą eksplozję tego typu odkryto w 2018 roku i kolokwialnie nazwano Krową. Naukowcy wciąż nie rozumieją mechanizmu FBOT. Jakby tego było mało, obecna eksplozja miała wielkość Układu Słonecznego i była bardzo płaska, tymczasem eksplozje powinny mieć kształt sferyczny.
Eksplozje gwiazd niemal zawsze mają kształt sfery, gdyż same gwiazdy są sferyczne. Tymczasem właśnie zarejestrowana krowa była najbardziej asferyczną ze wszystkich eksplozji. Kilka dni po jej zauważeniu astronomowie odkryli, że utworzyła ona dysk. Nie wykluczają, że powstał on z materiału wyrzuconego przez gwiazdę bezpośrednio przed wybuchem. Być może te niezwykle cechy nowego FBOT-a pomogą w wyjaśnieniu mechanizmu takich zjawisk.
Bardzo mało wiemy o eksplozjach FBOT. Nie zachowują się tak, jak powinny zachowywać się eksplodujące gwiazdy. Są zbyt jasne i zbyt szybko ewoluują. Są po prostu dziwaczne. A ta nowa najnowsza czyni je jeszcze bardziej dziwacznymi, mówi doktor Justyn Maund z University of Sheffield. Oby to rzuciło nowe światło na nie. Nigdy nie sądziliśmy, że eksplozja może być tak asferyczna. Istnieje kilka możliwych wyjaśnień tego zjawiska. Być może gwiazda utworzyła dysk bezpośrednio przed eksplozją, albo FBOT to nieudana supernowa, gdzie jądro gwiazdy zapadło się tworząc czarną dziurę lub gwiazdę neutronową, która pochłonęła resztę gwiazdy, zastanawia się uczony.
Odkrycia dokonano przypadkiem, gdy naukowcy zauważyli rozbłysk spolaryzowanego światła. Dokonali pomiary polaryzacji i zauważyli płaską eksplozję wielkości Układu Słonecznego. Zespół z Sheffield chce do wyszukiwania kolejnych FBOT wykorzystać Vera C. Rubin Observatory, wyjątkowy teleskop, który ma rozpocząć pracę w sierpniu bieżącego roku.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wyniesienie ładunku w przestrzeń kosmiczną wymaga olbrzymich ilości paliwa. Loty pozaziemskie są przez to niezwykle kosztowne. Jednak nowy rodzaj silnika, zwanego silnikiem rakietowy z rotującą detonacją (RDRE – rotating detonation engine), może spowodować, że rakiety nie tylko będą zużywały mniej paliwa, ale będą też lżejsze i mniej skomplikowane. Problem jednak w tym, że w chwili obecnej silnik taki jest zbyt nieprzewidywalny, by zastosować go w praktyce.
Naukowcy z University of Washington opublikowali na łamach Physical Review E opracowany przez siebie matematyczny model pracy takiego silnika. Dzięki temu inżynierowie mogą po raz pierwszy stworzyć testy pozwalające na udoskonalenie RDRE i spowodowanie, by były one bardziej stabilne.
Badania nad silnikami rakietowymi z rotującą detonacją wciąż znajdują się na wczesnym etapie. Mamy olbrzymią ilość danych na temat tych silników, ale wciąż nie rozumiemy, jak to wszystko działa. Spróbowałem na nowo przepisać nasze dane, ale patrząc na nie pod kątem występujących wzorców, a nie z inżynieryjnego punktu widzenia i nagle okazało się, że to działa, mówi główny autor badań, doktorant James Koch.
Konwencjonalny silnik rakietowy spala paliwo i wyrzuca je z tyłu, by uzyskać ciąg. RDRE spala paliwo w inny sposób. Składa się z koncentrycznych cylindrów. Paliwo wpływa pomiędzy cylindry i tam zostaje zapalone, co powoduje gwałtowne uwolnienie się ciepła w postaci fali uderzeniowej. To silny impuls pochodzący z gazów o znacznie wyższej temperaturze i ciśnieniu, który porusza się szybciej niż prędkość dźwięku, wyjaśnia Koch.
Proces spalania to tak naprawdę eksplozja, ale po tym pierwszym gwałtownym impulsie można tam zaobserwować liczne stabilne impulsy, podczas których spalane jest paliwo. Generowane są w ten sposób wysokie ciśnienie i temperatura, które generują ciąg, dodaje.
W konwencjonalnych silnikach mamy ponadto liczne podzespoły odpowiedzialne za kierowanie i kontrolowanie reakcji spalania tak, by można było ją wykorzystać do uzyskania ciągu. Jednak w RDRE te wszystkie podzespoły nie są potrzebne. Napędzana procesem spalania fala uderzeniowa w sposób naturalny przemieszcza się w komorze spalania. Minusem tego rozwiązania jest fakt, że nie można tego kontrolować. Gdy już wybuchnie, to reszta toczy się swoją drogą. To bardzo gwałtowny proces, dodaje Koch.
Uczeni, chcąc stworzyć matematyczny model pracy takiego silnika, zbudowali taki niewielki silnik. Próbowali kontrolować różne jego parametry, takie jak np. rozmiary przestrzeni pomiędzy cylindrami. Wszystko nagrywali za pomocą szybkiej kamery. Mimo, że każdy z eksperymentów trwał jedynie 0,5 sekundy, to dzięki kamerze pracującej z prędkością 240 000 klatek na sekundę, byli w stanie szczegółowo obserwować cały proces. Na tej podstawie powstał opisujący go model matematyczny.
To jedyny istniejący model opisujący zróżnicowane i złożone dynamiczne procesy zachodzące w silniku rakietowym z rotującą detonacją, mówi profesor matematyki J. Nathan Kutz.
Model nie jest jeszcze gotowy do wykorzystania przez inżynierów. Moim zadaniem było jedynie odtworzenie zachowania impulsów, które widzieliśmy podczas eksperymentów. Upewnienie się, że wyniki obliczeń są takie same, jak wyniki eksperymentów. Zidentyfikowałem główne zjawiska fizyczne i określiłem ich interakcje. Teraz mogę dokonać opisu ilościowego. Gdy już będzie on gotowy, możemy zacząć dyskusje na temat ulepszania silnika, wyjaśnia Koch.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.