Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

W laboratorium odtworzono wirujący dysk plazmy otaczającej czarną dziurę
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Międzynarodowy zespół, kierowany przez naukowców z University of Texas w Austin, zidentyfikował najbardziej odległą i najstarszą czarną dziurę, jaką kiedykolwiek potwierdzono obserwacyjnie. Dziura i jej macierzysta galaktyka CAPERS-LRD-z9, istniały zaledwie 500 milionów lat po Wielkim Wybuchu, 13,3 miliarda lat temu.
Odkrycia dokonano za pomocą teleskopu Jamesa Webba (JWST) w ramach programu CAPERS (CANDELS-Area Prism Epoch of Reionization Survey), którego celem jest identyfikacja i analiza najodleglejszych galaktyk. Kluczowe było zastosowanie spektroskopii, pozwalającej na rozszczepienie światła na poszczególne długości fal i wykrycie charakterystycznych przesunięć widma, wywołanych ruchem gazu wokół czarnej dziury. Dzięki temu astronomowie wykryli gaz poruszający się z prędkością ponad 3500 km/s. To sygnał wskazujący na istnienie aktywnego jądra galaktycznego. Zauważono je przy przesunięciu ku czerwieni z = 9,288.
Galaktyka należy do intrygującej klasy Małych Czerwonych Kropek (Little Red Dots). To odkryte w 2024 roku przez JWST kompaktowe obiekty, które pojawiły się między 0,6 a 1,5 miliarda lat po powstaniu wszechświata. W przypadku CAPERS-LRD-z9 źródłem intensywnego blasku jest supermasywna czarna dziura. Jej masę oszacowano na nawet 300 milionów mas Słońca, co stanowi do połowy masy wszystkich gwiazd w galaktyce.
Modelowanie emisji w zakresie UV i optycznym sugeruje, że czarna dziura jest otoczona gęstym obłokiem neutralnego gazu o gęstości rzędu 1010 cząsteczek wodoru na centymetr sześcienny. Ten gaz, działając jak filtr, nadaje obserwowanej galaktyce charakterystyczny czerwony odcień. Obserwacje wskazują również na małe rozmiary galaktyki, jej średnica to około 1100 lat świetlnych.
Tak masywna czarna dziura w tak młodym Wszechświecie rodzi fundamentalne pytania o mechanizmy ich powstawania. Być może czarne dziury we wczesnym wszechświecie rosły znacznie szybciej, niż zakładają obecne modele, albo też rozpoczynały swoje istnienie od znacznie większej masy.
Więcej na ten temat: CAPERS-LRD-z9: A Gas-enshrouded Little Red Dot Hosting a Broad-line Active Galactic Nucleus at z = 9.288.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na University of Queensland (UQ) prowadzone są eksperymenty nad wykorzystaniem pól magnetycznych do ochrony wchodzących w atmosferę pojazdów kosmicznych przed nadmierną temperaturą i przeciążeniami. Kluczowym elementem eksperymentów będzie zbadanie deformacji pól magnetycznych w kontakcie z gorącą plazmą. Ich celem jest zaś opracowanie technologii, która pozwoli na budowę bardziej bezpiecznych, lżejszych ich tańszych pojazdów kosmicznych.
Pojazdy kosmiczne wchodzące w atmosferę Ziemi pędzą z prędkością około 30 tys. km/h. Powietrze wokół nich staje się tak gorące, że zamienia się plazmę. Przed spłonięciem pojazdy chronione są za pomocą osłon termicznych. Celem profesora Gildfinda z UQ jest odepchnięcie tej plazmy od pojazdu za pomocą pól magnetycznych generowanych przez nadprzewodzące magnesy. To powinno znacząco zmniejszyć temperatury, jakich doświadcza pojazd wchodzący w atmosferę czy to Ziemi czy Marsa. Tym samym powrót taki będzie bezpieczniejszy, osłony termicznie nie będą musiały być tak potężne jak obecnie, pojazd stanie się więc lżejszy i tańszy. Podobnie jak cała misja związana z jego wystrzeleniem.
Dodatkową korzyścią z wykorzystania pól magnetycznych jest fakt, że gdy wywierają one nacisk na plazmę, plazma odpowiada tym samym. Pojawia się siła, która dodatkowo spowalnia opadający na planetę pojazd. W ten sposób mamy dodatkowy element hamujący. Pojawia się on wcześniej i spowolni pojazd jeszcze zanim otaczająca go kula ognia osiągnie maksymalną intensywność, a przeciążenia staną się trudne do zniesienia. A obniżenie temperatury powierzchni pojazdu oznacza, że osłony termiczne mogą być lżejsze, bez narażania na szwank bezpieczeństwa, wyjaśnia uczony.
Gildfind i jego zespół prowadzą eksperymenty w Centre for Hypersonics University of Queensland, jednym z najważniejszych środków badań nad prędkościami hipersonicznymi, definiowanymi jako prędkości co najmniej 5-krotnie większe od prędkości dźwięku. Dotychczas prowadzono niewiele badań nad deformacją pól magnetycznych przez plazmę utworzoną wokół szybko poruszającego się obiektu. Natomiast zupełnie nic nie wiadomo na temat tego, jak taka technologia sprawdziłaby się w przypadku obiektu wielkości pojazdu kosmicznego. Modele i analizy pokazują, że powinien być to znaczny efekt, ale dopóki tego nie przetestujemy, nie będziemy pewni, stwierdza uczony.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy od dziesięcioleci zastanawiają się, co się stało z polem magnetycznym Księżyca. Na jego istnienie w przeszłości wskazują bowiem przywiezione ze Srebrnego Globu próbki skał, wskazujące, że w przeszłości były one poddane działaniu silnego pola magnetycznego. Zaś obecnie Księżyc nie posiada globalnego pola magnetycznego. Co się więc stało z polem zarejestrowanym w skałach? Naukowcy z MIT uważają, że rozwiązali tę zagadkę.
Na łamach Science Advances opisali wyniki badań, w ramach których symulowali uderzenie w Księżyc dużego obiektu, jak asteroida. Symulacje wykazały, że w wyniku takiego zdarzenia mogła pojawić się chmura plazmy, która na krótko objęła Księżyc. Plazma taka przepłynęłaby wokół ziemskiego satelity i zgromadziła się po przeciwnej stronie do miejsca uderzania. Tam weszłaby w interakcje ze słabym polem magnetycznym Księżyca, na krótko je wzmacniając. Skały znajdujące się w miejscu nagromadzenia plazmy, zarejestrowałby ten magnetyzm.
Taka sekwencja wydarzeń wyjaśnia obecność wysoce namagnetyzowanych skał w regionie w pobliżu bieguna południowego, po niewidocznej z Ziemi stronie Księżyca. Zaś dokładnie po przeciwnej stronie od tego obszaru znajduje się Mare Imbrium, jeden z największych kraterów uderzeniowych. Badacze uważają, że to, co go utworzyło, doprowadziło też do powstania plazmy z ich symulacji.
Zagadkową obecność na Księżycu skał z zapisem silnego pola magnetycznego zauważono w latach 60. i 70. gdy misje Apollo przywiozły próbki. Pozostałości magnetyzmu, szczególnie po niewidocznej stronie Srebrnego Globu, potwierdziły też satelity. Jedna z hipotez mówi, że w przeszłości niewielkie jądro Księżyca generowało słabe pole magnetyczne. Jednak nie wyjaśnia ona, dlaczego w skałach, i to głównie po jednej stronie, pozostał zapis tak silnego magnetyzmu. Alternatywna hipoteza mówi o wielkim uderzeniu, w wyniku którego powstała chmura plazmy.
W 2020 roku współautorzy obecnych badań, Rona Oran i Benjamin Weiss, sprawdzili, czy takie uderzenie mogło na tyle wzmocnić słoneczne pole magnetyczne wokół Księżyca, by pozostał zapis w skałach. Okazało się, że nie mogło, co wydawało się wykluczać ten scenariusz.
Na potrzeby obecnych badań uczeni przyjęli inne kryteria. Założyli, że Księżyc posiadał w przeszłości dynamo magnetyczne. Biorąc pod uwagę rozmiary księżycowego jądra pole to musiało być słabe. Oszacowano je na 1 mikroteslę, czyli 50-krotnie mniej niż pole magnetyczne Ziemi. Następnie za pomocą jednego narzędzia przeprowadzili symulację uderzenia oraz powstałej plazmy, drugie zaś narzędzie pokazało, w jaki sposób taka plazma by się przemieszczała i wchodziła w interakcje z polem magnetycznym Księżyca. Wynika z nich, że doszłoby do utworzenia się i przepływu plazmy oraz wzmocnienia pola magnetycznego, ale byłby to proces bardzo szybki. Od momentu wzmocnienia pola do chwili jego powrotu do wartości początkowej minęłoby zaledwie 40 minut.
Postało więc pytanie, czy tak krótkie oddziaływanie pola pozostawiłoby zapis w skałach. Okazuje się, że tak, za pomocą dodatkowego zjawiska. Z badań wynika, że tak duże uderzenie, jakie utworzyło Mare Imbrium, spowodowałoby powstanie fali uderzeniowej, która skupiłaby się po przeciwnej stronie i doprowadziłaby do tymczasowego zaburzenia elektronów w skałach.
Naukowcy podejrzewają, że do zaburzenia tego doszło w momencie, gdy plazma wzmocniła pole magnetyczne. Gdy więc elektrony wróciły do stanu równowagi, ich spiny przyjęły orientację zgodną z chwilowo silnym polem magnetycznym. Jeśli rzucisz w powietrze w polu magnetycznym talię kart i każda z kart będzie wyposażone w igłę od kompasu, to gdy karty upadną na ziemię, będą zorientowane w inną stronę, niż przed wyrzuceniem. Tak właśnie działa ten proces, wyjaśnia obrazowo Weiss.
Źródło: Impact plasma amplification of the ancient lunar dynamo
« powrót do artykułu -
przez KopalniaWiedzy.pl
Fuzja jądrowa to obietnica czystego, bezpiecznego i praktycznie nieskończonego źródła energii. Badania nad nią trwają od dziesięcioleci i nic nie wskazuje na to, byśmy w najbliższym czasie mogli zastosować ją w praktyce. Naukowcy dokonują powolnych, mniejszych lub większych, kroków na przód w kierunku jej opanowania. Uczeni z University of Texas, Los Alamos National Laboratory i Type One Energy Group rozwiązali właśnie poważny problem, który od 70 lat nękał jeden z rodzajów reaktorów fuzyjnych – stellaratory – spowalniając prace nad nimi. Jego rozwiązanie przyda się również w udoskonaleniu tokamaków, innego – znacznie bardziej popularnego – projektu reaktora fuzyjnego.
Jednym z poważnych wyzwań stojących przed wykorzystaniem w praktyce fuzji jądrowej jest utrzymanie wysokoenergetycznych cząstek wewnątrz reaktora. Gdy takie wysokoenergetyczne cząstki alfa wyciekają, uniemożliwia to uzyskanie wystarczająco gorącej i gęstej plazmy, niezbędnej do podtrzymania reakcji. Inżynierowie opracowali złożone metody zapobiegania wyciekom za pomocą pól magnetycznych, jednak w polach takich występują luki, a przewidzenie ich lokalizacji i zapobieżenie im wymaga olbrzymich mocy obliczeniowych i wiele czasu.
Na łamach Physical Review Letters ukazał się artykuł, w którym wspomniani wcześniej naukowcy informują o opracowaniu metody 10-krotnie szybszego przewidywania miejsc pojawiania się luk, bez poświęcania dokładności.
Rozwiązaliśmy problem, który był nierozwiązany od 70 lat. Będzie to znaczący przełom w sposobie projektowania reaktorów, mówi profesor Josh Burry z University of Texas. W stellaratorach wykorzystywany jest układ cewek, za pomocą których generowane są pola magnetyczne. Nazywany jest on „magnetyczną butelką”. Miejsca występowania dziur w magnetycznej butelce można precyzyjnie przewidywać korzystając z zasad dynamiki Newtona. Jednak działanie takie wymaga olbrzymich ilości czasu i wielkich mocy obliczeniowych. Co więcej, by zaprojektować stellarator idealny konieczna byłaby symulacja setek tysięcy różnych projektów i stopniowe dostosowywanie do każdego z nich układu magnetycznej butelki.
By więc oszczędzić czas i pieniądze podczas obliczeń standardowo używa się teorii perturbacji, która daje wyniki przybliżone. Są one jednak znacznie mniej dokładne. Autorzy najnowszych badań podeszli do problemu w inny sposób, wykorzystując teorię symetrii.
Obecnie nie ma innego niż nasz teoretycznego sposobu na rozwiązanie kwestii uwięzienia cząstek alfa. Bezpośrednie zastosowanie zasad dynamiki Newtona jest zbyt kosztowne, a teoria perturbacji związana jest z poważnymi błędami. Nasza teoria jest pierwszą, która radzi sobie z tymi ograniczeniami, dodaje Burry.
Co więcej, nowa praca może pomóc też w rozwiązaniu podobnego, ale innego problemu występującego w tokamakach. W nich z kolei problemem są wysokoenergetyczne elektrony, które dziurawią osłony reaktora. Nowa metoda może pozwolić na zidentyfikowanie luk w polach magnetycznych, przez które elektrony wyciekają.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Czarne dziury od dziesięcioleci fascynują naukowców, pisarzy i zwykłych zjadaczy chleba. Zgodnie z ogólną teorią względności Einsteina, wszystko, co dostaje się do czarnej dziury opada do jej centrum i zostaje tam zniszczone przez gigantyczną grawitację. Centrum to, zwane osobliwością, to nieskończenie mały punkt, w którym przyspieszenie grawitacyjne jest nieskończone. Tam skupia się cała materia czarnej dziury.
Na łamach Physical Review Letters ukazał się artykuł autorstwa Steffena Gielena z University of Sheffield i Lucíi Menéndez-Pidal z Universidad Complutense de Madrid, którzy stwierdzają, że osobliwość nie oznacza końca, a raczej nowy początek. Tym nowym początkiem mają być białe dziury, w które zmieniają się czarne dziury.
Para uczonych wykorzystała mechanikę kwantową oraz uproszczony teoretyczny model płaskiej dwuwymiarowej czarnej dziury. Od dawna zastanawiano się, czy mechanika kwantowa może zmienić nasze rozumienie czarnych dziur i pozwolić nam zajrzeć w głąb ich prawdziwej natury. Z punktu widzenia mechaniki kwantowej czas nie może się skończyć, gdyż układy ciągle zmieniają się i ewoluują, stwierdza Gielen. Naukowcy pokazali jak, za pomocą praw mechaniki kwantowej, osobliwość wewnątrz czarnej dziury zostaje zastąpiona przez wielki region fluktuacji kwantowych, niewielkich zmian energii, gdzie czas i przestrzeń nie mają końca. W regionie tym czas i przestrzeń zmieniają się w nową fazę, zwaną białą dziurą. To obszar, w którym przestrzeń zaczyna funkcjonować przeciwnie do czarnej dziury. W ten sposób białe dziury mogą być miejscem, gdzie czas się rozpoczyna. O ile czarne dziury wszystko pochłaniają, białe dziury mają wyrzucać z siebie materię, a nawet czas, z powrotem do wszechświata.
O ile, zwykle, czas jest postrzegany zawsze w odniesieniu do obserwatora, w naszych badaniach czas pochodzi od tajemniczej ciemnej energii, która wypełnia wszechświat. Proponujemy, by czas był mierzony przez ciemną energię obecną wszędzie we wszechświecie i odpowiedzialną za jego aktualne rozszerzanie się, dodaje Gielen. W artykule ciemna energia została użyta niemal w roli punktu odniesienia, a czas i energia są uzupełniającymi się bytami.
To jednak dopiero początek. Hipotetycznie może istnieć obserwator – jakiś hipotetyczny byt – który wejdzie do czarnej dziury, przejdzie przez to, co opisujemy jako osobliwość i pojawi się po drugiej stronie białej dziury. To wysoce abstrakcyjne, ale w teorii może się wydarzyć, stwierdza uczony.
Jednak odkładając na bok tego hipotetycznego obserwatora, niezwykle istotnym elementem nowych rozważań jest sugestia, że istnieje głęboka łączność pomiędzy naturą czasu w jego najbardziej podstawowej formie, a ciemną energią, która wypełnia kosmos i rządzi jego rozszerzaniem się. Nowe badania sugerują też inne podejście do prób połączenia grawitacji i mechaniki kwantowej.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.