Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Hubble zmierzył gigantyczną prędkość dżetu z miejsca zderzenia gwiazd neutronowych
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Europejski radioteleskop LOFAR (LOw Frequency ARray) – którego stacje znajdują się również w Polsce – zanotował najdłuższą parę dżetów wydobywających się z czarnej dziury. Struktura nazwana Porfyrion – od imienia jednego z gigantów z mitologii greckiej – ma długość 23 milionów lat świetlnych. Dotychczas, na podstawie obserwacji i obliczeń sądzono, że maksymalna długość takich dżetów jest znacznie mniejsza.
Dotychczas sądzono, że limit długości pary dżetów wynosi 4,6–5,0 Mpc (megaparseków). Parsek to 3,26 roku świetlnego, zatem mówimy tutaj o około 16 milionach lat świetlnych. W 2022 roku ten sam zespół naukowy poinformował o istnieniu dżetu wydobywającego się z galaktyki radiowej Alkynoeus. Ma on długość 5 Mpc i był opisywany jako największa struktura pochodzenia galaktycznego. Brak dłuższych par dżetów oraz wyliczenia teoretyczne skłoniły naukowców do wysunięcia hipotezy, że 5 Mpc jest limitem długości.
Informujemy o zaobserwowaniu struktury radiowej rozciągającej się na około 7 Mpc, czytamy na łamach Nature. Istnienie dżetu dowodzi, że tego typu struktury mogą uniknąć zniszczenia przez niestabilności magnetohydrodynamiczne na przestrzeniach kosmologicznych, nawet jeśli powstały w czasie, gdy wszechświat był znacznie bardziej gęsty, niż obecnie. Nie wiadomo, w jaki sposób tak długotrwała stabilność mogła zostać zachowana.
Odkrycie sugeruje też, że gigantyczne dżety mogły odgrywać większą niż sądzono rolę w formowaniu się galaktyk we wczesnym wszechświecie. Astronomowie uważają, że galaktyki i ich czarne dziury wspólnie przechodzą ewolucję, a jednym z kluczowych elementów dżetów jest emitowanie olbrzymich ilości energii, które wpływają na ich galaktyki macierzyste i galaktyki z nimi sąsiadujące. Nasze odkrycie pokazuje, że oddziaływanie takich dżetów rozciąga się na większe odległości, niż sądziliśmy, mówi współautor badań, profesor George Djorgovski z Kalifornijskiego Uniwersytetu Technologicznego.
Autorzy nowych badań wykorzystali LOFAR do poszukiwania olbrzymich dżetów. Dżety to powszechne zjawisko, jednak zwykle są stosunkowo niewielkie. Wcześniej znano setki naprawdę dużych struktur tego typu i uważano, że rzadko one występują. Teraz badacze zarejestrowali ich ponad 10 000. Wielkie dżety były znane wcześniej, ale nie wiedzieliśmy, że jest ich tak dużo, dodaje profesor Martin Hardcastle z University of Hertfordshire.
Poszukiwania olbrzymich dżetów rozpoczęły się od dość przypadkowego spostrzeżenia. W 2018 roku główny autor obecnych badań, Martijn S. S. L. Oei, wraz z zespołem wykorzystał LOFAR do obserwowania włókien rozciągających się pomiędzy galaktykami. Na obrazach naukowcy dostrzegli zaskakująco dużo wielkich dżetów. Nie mieliśmy pojęcia, że jest ich aż tyle, mówi Oei.
Naukowcy zaczęli więc szukać kolejnych wielkich dżetów i trafili na Porfyriona. Poza LOFAR-em wykorzystali kilka innych teleskopów, dzięki którym określili, skąd pochodzi i jak daleko od nas się znajduje. Zauważyli nie tylko, że struktura ta pochodzi ze znacznie wcześniejszych okresów istnienia wszechświata, niż inne. Stwierdzili, że gigant znajduje się w regionie wszechświata, w którym istnieje wiele czarnych dziur tego samego typu, z którego on pochodzi. To aż może wskazywać, że przez astronomami jeszcze wiele podobnych odkryć. Możemy obserwować wierzchołek góry lodowej, mówi Oei.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na podstawie najnowszych wyników badań z obserwatoriów fal grawitacyjnych LIGO/Virgo, naukowcy przeprowadzili testy Ogólnej Teorii Względności (OTW). Zgodność teorii Einsteina z danymi obserwacyjnymi testowano dziewięcioma różnymi metodami. Żadnych niezgodności nie stwierdzono. W badaniach brali udział polscy naukowcy z grupy Polgraw, w tym uczeni z NCBJ.
Ogólna Teoria Względności zaproponowana ponad 100 lat temu przez Alberta Einsteina jest obecnie powszechnie przyjętą teorią grawitacji. Jest ona niezwykle elegancka i koncepcyjnie w zasadzie prosta, choć obliczenia wykonywane na jej podstawie do prostych nie należą. Teoria prawidłowo opisuje poznane zjawiska astronomiczne napędzane przez grawitację, a także jest podstawą do budowy scenariuszy kosmologicznych. W miarę postępu badań i obserwacji, w miarę gromadzenia coraz większych, coraz dokładniejszych i coraz lepiej uporządkowanych zbiorów danych, obszar dostępnych nam zjawisk stale się poszerza. W nauce żadnej teorii nie traktujemy jako dogmatu – tłumaczy prof. Marek Biesiada z Zakładu Astrofizyki NCBJ. Dlatego teorie poddajemy testom, stale sprawdzając ich przewidywania. Jak dotąd OTW została potwierdzona bardzo precyzyjnymi obserwacjami w Układzie Słonecznym i w układach podwójnych pulsarów. Fale grawitacyjne emitowane przez zlewające się czarne dziury dostarczają kolejnej możliwości testowania teorii względności. Jest to reżim silnie zakrzywionych czasoprzestrzeni, wcześniej słabo dostępny testowaniu.
Są przynajmniej dwie przesłanki nakazujące nam sprawdzać, czy OTW wymaga modyfikacji lub zastąpienia nową teorią. Pierwszą z nich są problemy kosmologiczne znane jako ciemna materia i ciemna energia. Problem ciemnej materii polega na tym, że galaktyki i ich gromady przyciągają silniej niż powinny, gdyby uwzględnić całą znaną nam materię. Problem ciemnej energii to fakt, że Wszechświat przyspiesza swą ekspansję, zamiast zwalniać, jak wydaje się przewidywać OTW. Chociaż robocze nazwy ciemna materia i ciemna energia sugerują odpowiedź w postaci nieznanych składników materialnych, pozostaje możliwość, że OTW wymaga modyfikacji. Drugą przesłanką jest wynikająca z OTW konieczność występowania osobliwości, czyli obszarów, gdzie kończą się historie wszystkich cząstek i fotonów. Wydaje się, że problem ten jest związany z kwantową teorią grawitacji, której nie udało się stworzyć w zadowalającej wszystkich postaci. Tu również fale grawitacyjne emitowane przez zlewające się czarne dziury mogą dostarczyć nam wskazówek.
Współprace badawcze LIGO i Virgo opublikowały w tym tygodniu podsumowanie analiz zebranych przez nie danych pod kątem ich zgodności z przewidywaniami OTW. Analizy zebrano w 9 głównych grup stanowiących testy teorii.
Pierwszy test dotyczył zgodności rejestrowanego sygnału bazowego (szumu) ze znanym z testów laboratoryjnych szumem detektora. Z OTW wiemy jak sygnał od dwóch zwartych obiektów powinien wyglądać w detektorach fal grawitacyjnych. Jednak to, czym posługujemy się do opisu sygnału jest teorią – jak cała nauka jest pewnym przybliżeniem, najlepszym jakie mamy, opisującym świat, dopóki nie znajdziemy lepszego. Jeśli OTW nie opisywałaby dostatecznie dobrze takich sygnałów to mielibyśmy przewidywanie teoretyczne plus dodatkowy komponent, który wynika z nieuwzględnionych efektów. Aby zobaczyć, czy taki dodatkowy komponent jest obecny, trzeba było sprawdzić, czy po odjęciu przewidywanego sygnału reszta będzie miała charakterystykę normalnego szumu w detektorze. Przeprowadzony test potwierdził słuszność OTW.
Przeprowadzono też test zgodności przebiegu (kształtu) fal przed i po zlaniu się dwóch obiektów. Źródłami fal grawitacyjnych, które obserwujemy są układy: dwóch gwiazd neutronowych; dwóch czarnych dziur; układ czarna dziura – gwiazda neutronowa. Zdarzenie zlania się tych obiektów następuje w 3 głównych fazach: moment tuż przed zderzeniem, moment zlania się oraz faza stabilizacji. OTW przewiduje, że fazy sprzed zderzenia oraz po powinny generować podobne fale. Przewidywania OTW są zgodne z obserwacjami dla analizowanej próbki. Kolejne dwa testy dotyczyły zachowania się obiektów w pierwszej fazie zlewania, gdy ciała niebieskie okrążają się wzajemnie.
Wzajemne okrążanie zwartych obiektów, takich jak czarne dziury czy gwiazdy neutronowe, zbliżających się do siebie dzięki utracie energii emitowanej w postaci fal grawitacyjnych, można przybliżyć przez powolny ruch w przybliżeniu słabego pola – nazywa się to post-Newtonowskim przybliżeniem OTW. Podejście to opisane jest kilkoma parametrami, których określenie na tej podstawie można porównać z parametrami otrzymanymi przez OTW. Najnowsze obserwacje wraz z już istniejącymi, pozwalają bardzo dobrze określić ograniczenia wartości tych parametrów. Wyniki te są statystycznie spójne z przewidywaniami OTW.
Pierwsza faza, przed zlaniem się obiektów, pozwala również na sprawdzenie, czy obserwowany sygnał jest zgodny z przewidywaniami zlania się dwóch rotujących czarnych dziur (czarnych dziur Kerra). Jeśli któryś ze składników (lub oba) będzie rotował – powstały obiekt będzie spłaszczony na biegunach i poszerzony na równiku. Naukowcy są w stanie wyłuskać tę informację z danych obserwacyjnych, dzięki czemu można ustalić, że źródłem fal grawitacyjnych nie są żadne egzotyczne, nieprzewidziane przez OTW, obiekty.
Podobne podejście zastosowano do określenia parametrów zdarzenia w trakcie i po zlaniu się obiektów. Czas trwania zlewania się i stabilizacji nowego obiektu jest dużo krótszy od fazy zbliżania się, więc obserwowany sygnał jest dużo silniejszy od widocznego szumu. Oszacowane na tej podstawie parametry dają wartości statystycznie zgodne z przewidywaniami OTW.
Kolejnym jest test propagacji fal grawitacyjnych. Według przewidywań OTW fale grawitacyjne nie podlegają dyspersji, czyli prędkość ich rozchodzenia się nie zależy od ich częstotliwości. OTW można zmodyfikować w taki sposób, by własność ta nie była zachowana. W takiej sytuacji fale pochodzące bezpośrednio ze zlania się obiektów, o wyższej częstotliwości, dotarłyby do obserwatora szybciej, niż fale o mniejszej częstotliwości – pochodzące z fazy początkowej. Nie znaleziono dowodów dyspersji fal grawitacyjnych, co jest zgodne z przewidywaniami OTW.
Brak zaobserwowanej dyspersji umożliwia nam ograniczenie modeli fizyki cząstek, które zakładają, że grawitony cząstki odpowiadające za oddziaływania grawitacyjne - mają masę (tak zwany model ciężkich grawitonów). W ramach OTW grawitony powinny być bezmasowe i podróżować z prędkością światła. Modele ciężkich grawitonów przewidują jednak istnienie dyspersji w pewnym stopniu, więc obserwacje mogą dać ograniczenie na masę grawitonów. W tych badaniach określono masę grawitonów (o ile ją posiadają) na poniżej 1.3*10-23 eV/c2.
Ósmy test dotyczy polaryzacji fal grawitacyjnych. W ramach OTW fale grawitacyjne mogą mieć jedynie dwa typy polaryzacji: typu plusa lub typu X. Bardziej ogólna teoria może prowadzić do nawet sześciu unikatowych typów polaryzacji fal. Przeanalizowano dane obu detektorów LIGO oraz detektora Virgo pod kątem polaryzacji, których OTW nie uwzględnia. Testy nie wykazały możliwości istnienia innych polaryzacji niż przewidywanych przez OTW.
Istnieją alternatywne teorie względem istnienia czarnych dziur. Obiekty takie, nazywane są mimikami czarnych dziur ze względu na to, że mają podobne parametry jak czarne dziury, jednak nie są nimi w sensie OTW. Jedną z najbardziej charakterystycznych cech czarnych dziur jest horyzont zdarzeń, czyli obszar, z którego nic nie jest w stanie uciec - nawet światło. W przypadku mimików, powierzchnia taka miałaby albo częściową, albo pełną refleksyjność, co wywołałoby pewnego rodzaju echo w sygnale z trzeciej fazy zlewania się obiektów. Analizy nie wykazały istnienia tego typu ech, co jest zgodne z przewidywaniami OTW.
Stawiając się w pozycji przeciwników OTW, naukowcy przeprowadzili 9 testów, które mogłyby wykazać błędność Ogólnej Teorii Względności. Dowodów niezgodności nie znaleziono. Testy z całą pewnością będą kontynuowane, bo taka jest istota badań naukowych. Wszelkie niezgodności jakie ewentualnie wystąpią między obserwacjami, a przewidywaniami OTW, mogą w przyszłości zaowocować poznaniem nowych zjawisk.
Nie są to wszystkie testy jakim można poddać teorię grawitacji dzięki badaniu fal grawitacyjnych – wyjaśnia dr Adam Zadrożny z Zakładu Astrofizyki NCBJ, członek polskiej grupy badawczej Polgraw. Bardzo ciekawym przykładem był pomiar stałej Hubble’a dla obserwacji fal grawitacyjnych GW170817 i rozbłysku optycznego AT 2017gfo, które były wynikiem tego samego zdarzenia. Zostało to opisane w czasopiśmie Nature w 2017 roku (vol. 551, p. 85–88). Pomiar stałej Hubble’a wykonany przy użyciu danych z detektorów fal grawitacyjnych był zgodny z wynikami uzyskanymi innymi metodami. Warto też dodać, że prof. Andrzej Królak (IM PAN i NCBJ) razem z prof. Bernardem F. Schutzem (Cardiff University) w pracach w latach 80-tych dali postawy wielu metodom analizy danych z detektorów interferometrycznych takich jak LIGO i Virgo.
Polska od 2008 roku jest częścią projektu Virgo. Polscy uczestnicy projektu tworzą grupę Polgraw, której przewodzi prof. Andrzej Królak (IM PAN, NCBJ). Grupa bierze udział zarówno w badaniach naukowych konsorcjum LIGO-Virgo-KAGRA (LVK) jak i w konstrukcji detektora Virgo. Wśród badań naukowych prowadzonych przez grupę Polgraw, w ramach LVK, są między innymi analiza danych, rozwijanie metod statystycznych, modelowanie źródeł fal grawitacyjnych oraz analizy emisji fal elektromagnetycznych towarzyszących emisji fal grawitacyjnych. W skład grupy Polgraw wchodzi 12 instytucji w tym Instytut Matematyczny PAN, CAMK (Warszawa), Obserwatorium Astronomiczne UW, Uniwersytet Zielonogórski, Uniwersytet w Białymstoku, NCBJ, Uniwersytet Wrocławski, CAMK (Toruń), Obserwatorium Astronomczne UJ, AGH, ACK Cyfronet AGH, Centrum Fizyki Teoretycznej PAN. W skład konsorcjum LVK wchodzą ze strony NCBJ prof. Andrzej Królak, dr Orest Dorosh, dr Adam Zadrożny i mgr Margherita Grespan. Prace prowadzone w NCBJ dotyczą metod detekcji sygnałów pochodzących od rotujących gwiazd neutronowych, infrastruktury umożliwiającej szybką detekcję sygnałów grawitacyjnych oraz nowych metod analizy i lokalizacji sygnału opartych o sieci neuronowe.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Fizycy z Thomas Jefferson National Accelerator Facility (TJNAF – Jefferson Lab) zmierzyli z niezwykłą dokładnością grubość neutronowej „skórki” tworzącej otoczkę jądra ołowiu. Na łamach Physical Review Letters poinformowali, że grubość ta wynosi 0,28 milionowych części nanometra. A ich pomiary mają duże znaczenie dla określenia struktury i rozmiarów... gwiazd neutronowych.
Jądro każdego pierwiastka składa się z protonów i neutronów. To m.in. one określają właściwości pierwiastków i pozwalają nam je od siebie odróżnić. Fizycy od dawna badają jądra atomowe, by dowiedzieć się, w jaki sposób protony i neutrony oddziałują ze sobą. W Jefferson Lab prowadzony jest Lead Radius Experiment (PREx), którego celem jest dokładne zbadanie rozkładu protonów i neutronów w jądrze ołowiu.
Pytanie brzmi, gdzie w jądrze znajdują się neutrony. Ołów to ciężki pierwiastek. Posiada dodatkowe neutrony. Jeśli jednak bierzemy pod uwagę wyłącznie oddziaływanie sił jądrowych, które wiążą protony i neutrony w jądrze, to lepiej sprawdza się model, w którym jądro ołowiu posiada równą liczbę protonów i neutronów, mówi profesor Kent Paschke z University of Virginia, rzecznik prasowy PREx.
W lekkich jądrach, zawierających niewiele protonów, zwykle rzeczywiście liczba protonów i neutronów jest równa. Jednak im cięższe jądro, tym potrzebuje więcej neutronów niż protonów, by pozostać stabilnym. Wszystkie stabilne jądra pierwiastków, które zawierają ponad 20 protonów, mają więcej neutronów niż protonów. Ołów zaś to najcięższy pierwiastek o stabilnych izotopach. Jego jądro zawiera 82 protony i 126 neutronów. A do zrozumienia, jak to wszystko trzyma się razem, musimy wiedzieć, w jaki sposób w jądrze rozłożone są dodatkowe neutrony.
Protony w jądrze ołowiu ułożone są w kształt sfery. Neutrony tworzą większą sferę otaczającą mniejszą. Tę większą sferę nazwaliśmy skórką neutronową, wyjaśnia Paschke. Tę skórkę po raz pierwszy zauważono właśnie w Jefferson Lab w 2012 roku. Od tamtej pory naukowcy starają się mierzyć jej grubość z coraz większą precyzją.
Neutrony trudno jest badać, gdyż wiele narzędzi, które mają do dyspozycji fizycy, rejestruje oddziaływania elektromagnetyczne, które są jednymi z czterech podstawowych sił natury. Eksperyment PREx do pomiarów wykorzystuje inną z podstawowych sił – oddziaływania słabe. Protony posiadają ładunek elektryczny, który możemy badań za pomocą oddziaływań elektromagnetycznych. Neutrony nie posiadają ładunku elektrycznego, ale – w porównaniu z protonami – generują potężne oddziaływania słabe. Jeśli więc jesteś w stanie to wykorzystać, możesz określić, gdzie znajdują się neutrony, dodaje Paschke.
Autorzy nowych badań wykorzystali precyzyjnie kontrolowany strumień elektronów, który został wystrzelony w stronę cienkiej warstwy ołowiu schłodzonej do temperatur kriogenicznych. Elektrony obracały się w kierunku ruchu wiązki i wchodziły w interakcje z protonami i neutronami w atomach ołowiu. Oddziaływania elektromagnetyczne zachowują symetrię odbicia, a oddziaływania słabe nie. to oznacza, że elektron, który wchodzi w interakcję za pomocą sił elektromagnetycznych, robi to niezależnie od kierunku swojego spinu. Natomiast jeśli chodzi o interakcje za pomocą oddziaływań słabych, to widoczna jest tutaj wyraźna preferencja jednego kierunku spinu. Możemy więc wykorzystać tę asymetrię do badania siły oddziaływań, a to pozwala nam określić obszar zajmowany przez neutrony. Zdradza nam zatem, gdzie w odniesieniu do protonów, znajdują się neutrony, mówi profesor Krishna Kumar z University of Massachusetts Amherst.
Przeprowadzenie eksperymentów wymagało dużej precyzji. Dość wspomnieć, że kierunek spinu elektronów w strumieniu był zmieniany 240 razy na sekundę, a elektrony, zanim dotarły do badanej próbki ołowiu, odbywały ponad kilometrową podróż przez akcelerator. Badacze znali relatywną pozycję względem siebie strumieni elektronów o różnych spinach z dokładnością do szerokości 10 atomów.
Dzięki tak wielkiej precyzji naukowcy stwierdzili, że średnica sfery tworzonej przez protony wynosi około 5,5 femtometrów. A sfera neutronów jest nieco większa, ma około 5,8 femtometrów. Skórka neutronowa ma więc 0,28 femtometra grubości. To około 0,28 milionowych części nanometra, informuje Paschke.
Jak jednak te pomiary przekładają się na naszą wiedzę o gwiazdach neutronowych? Wyniki uzyskane w Jefferson Lab wskazują, że skórka neutronowa jest grubsza, niż sugerowały niektóre teorie. To zaś oznacza, że do ściśnięcia jądra potrzebne jest większe ciśnienie niż sądzono, zatem samo jądro jest nieco mniej gęste. A jako, że nie możemy bezpośrednio badać wnętrza gwiazd neutronowych, musimy opierać się na obliczeniach, do których używamy znanych właściwości składowych tych gwiazd.
Nowe odkrycie ma też znaczenie dla danych z wykrywaczy fal grawitacyjnych. Krążące wokół siebie gwiazdy neutronowe emitują fale grawitacyjne, wykrywane przez LIGO. Gdy już są bardzo blisko, w ostatnim ułamku sekundy oddziaływanie jednej gwiazdy powoduje, że druga staje się owalna. Jeśli skórka neutronowa jest większa, gwiazda przybierze inny kształt niż wówczas, gdy skórka ta jest mniejsza. A LIGO potrafi zmierzyć ten kształt. LIGO i PREx badają całkowicie różne rzeczy, ale łączy je podstawowe równanie – równanie stanu materii jądrowej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Konsorcja naukowe Virgo, LIGO i KAGRA ogłosiły pierwsze w historii odkrycie układów podwójnych składających się z czarnej dziury i gwiazdy neutronowej. Było to możliwe dzięki wykryciu w styczniu 2020 r. sygnałów fal grawitacyjnych wyemitowanych przez dwa układy (nazwane od daty ich rejestracji GW200105 i GW200115) w których wirujące wokół siebie czarna dziura i gwiazda neutronowa połączyły się w jeden zwarty obiekt. Astronomowie już kilkadziesiąt lat temu przewidzieli istnienie takich układów, ale do tej pory nigdy nie zaobserwowano ich z całkowitą pewnością, ani za pomocą sygnałów elektromagnetycznych, ani obserwując fale grawitacyjne. Wyniki nowych obserwacji i ich astrofizyczne implikacje zostały opublikowane w The Astrophysical Journal Letters.
Od momentu pierwszej spektakularnej detekcji fal grawitacyjnych z koalescencji dwóch czarnych dziur, GW150914, za którą została przyznana nagroda Nobla w 2017, zarejestrowaliśmy sygnały z 50 układów podwójnych obiektów zwartych, ale były to wyłącznie pary łączących się czarnych dziur lub gwiazd neutronowych. Długo wyczekiwane odkrycie układów podwójnych gwiazdy neutronowej z czarną dziurą rzuca światło na narodziny, życie i śmierć gwiazd, jak również na otoczenie, w którym powstały – wyjaśnia prof. Dorota Rosińska
Te obserwacje pokazują, ze istnieją mieszane układy podwójne zawierające gwiazdy neutronowe i czarne dziury. Istnienie takich układów było przewidziane w wielu scenariuszach, w tym rozwijanych przez mnie wraz z prof. Belczynskim od ponad dwudziestu lat. Ta detekcja jest potwierdzeniem takich przewidywań – mówi prof. Tomasz Bulik
Sygnały fal grawitacyjnych zarejestrowane w styczniu 2020 r. zawierają cenne informacje o cechach fizycznych zaobserwowanych układów, takich jak ich odległości i masy składników, a także o mechanizmach fizycznych, które takie pary wygenerowały i doprowadziły do ich połączenia. Analiza danych wykazała, że czarna dziura i gwiazda neutronowa, które stworzyły GW200105, są odpowiednio około 8,9 i 1,9 razy masywniejsze od naszego Słońca, a ich połączenie miało miejsce około 900 milionów lat temu. W przypadku zdarzenia GW200115 naukowcy z konsorcjów Virgo i LIGO szacują, że dwa zwarte obiekty miały masy około 5,7 (czarna dziura) i 1,5 (gwiazda neutronowa) mas Słońca i połączyły się niemal miliard lat temu.
Prof. Rosińska: Spodziewaliśmy się, że podczas koalescencji gwiazdy neutronowej z czarną dziurą, gwiazda zostanie rozerwana przez siły pływowe, gdy znajdzie się dostatecznie blisko czarnej dziury, jednak duża różnica mas obiektów spowodowała, że prawdopodobnie gwiazda neutronowa została połknięta w całości przez czarną dziurę.
Ogłoszony wynik, wraz z dziesiątkami innych detekcji dokonanych do tej pory przez detektory Virgo i LIGO, pozwala po raz pierwszy na dokładną obserwację jednych z najbardziej gwałtownych i rzadkich zjawisk we Wszechświecie. Badamy proces ich tworzenia oraz miejsce ich narodzin. Obserwacje koalescencji czarnej dziury i gwiazdy neutronowej, dają możliwość testowania fundamentalnych praw fizyki w ekstremalnych warunkach, których nigdy nie będziemy w stanie odtworzyć na Ziemi. Prof. Rosińska: Mamy nadzieję, że przyszłym obserwacjom łączenia się gwiazdy neutronowej z czarną dziurą może towarzyszyć wykrycie wytworzonego w tym procesie promieniowania elektromagnetycznego, co da nam wgląd w proces rozrywania pływowego gwiazdy neutronowej przez czarną dziurę. Może to dostarczyć informacji o ekstremalnie gęstej materii, z której składają się gwiazdy neutronowe.
Obserwacja dwóch układów gwiazda neutronowa-czarna dziura pokazuje, że koalescencji tego typu obiektów może być od 5 do 15 rocznie w objętości o promieniu miliarda lat świetlnych. To szacowane tempo łączenia się NSBH można wytłumaczyć zarówno izolowaną ewolucją układów podwójnych jak i dynamicznymi oddziaływaniami w gęstych gromadach gwiazd, ale dostępne do tej pory dane nie pozwalają nam na wskazanie bardziej prawdopodobnego scenariusza.
W pracach uczestniczyli naukowcy z Obserwatorium Astronomicznego UW: prof. Tomasz Bulik, prof. Dorota Rosińska, mgr Małgorzata Curyło, mgr Neha Singh, dr Przemysław Figura, dr Bartosz Idźkowski, mgr Paweł Szewczyk.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dzięki Very Large Telescope astronomom udało się odkryć i zbadać najbardziej odległe źródło emisji radiowej z dżetami. Źródłem tym jest kwazar położony w odległości 13 miliardów lat świetlnych od Ziemi. Odkrycie pozwoli na lepsze zrozumienie wczesnego wszechświata.
Kwazary to bardzo jasne obiekty znajdujące się w centrach niektórych galaktyk. Są one zasilane przez supermasywne czarne dziury. Promieniowanie kwazara powstaje w dysku akrecyjnym otaczającą czarną dziurę. Gaz i pył opadające na dysk rozgrzewają się, emitując olbrzymie ilości promieniowania.
Nowo odkryli kwazar, P172+18 [PDF], powstał, istniał, gdy wszechświat miał zaledwie 780 milionów lat. Znamy bardziej odległe kwazary, ale przy żadnym z nich nie zauważono dotychczas dżetów.
Kwazar zasilany jest przez czarną dziurę o masie około 300 milionów razy większej od masy Słońca. Pochłania ona materię bardzo szybko. To jedna z najszybciej przybierających na masie czarnych dziur, mówi współautorka badań Chiara Mazzucchelli.
Specjaliści sądzą, że istnieje związek pomiędzy szybkim pochłanianiem materii przez czarną dziurę, a potężnymi dżetami z kwazarów. Niewykluczone, że dżety zaburzają przepływ gazu w pobliżu czarnej dziury powodując, że szybciej opada on na dysk akrecyjny. Badanie kwazarów z dżetami może więc wiele powiedzieć na temat szybkiego pojawienia się supermasywnych czarnych dziur we wczesnym wszechświecie.
Drugi z autorów badań, Eduardo Bañados z Instytutu Astronomii im. Maxa Plancka mówi, że wkrótce uda się znaleźć więcej podobnych kwazarów, niewykluczone, że jeszcze dalej położonych.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.