Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Teleskop Webba sfotografował swoją pierwszą egzoplanetę
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Niewielki wargatek sanitarnik to niezwykła ryba. Żywi się pasożytami skóry innych ryb, które przypływają do „stacji sanitarnych” wargatków na czyszczenie. Wcześniejsze badania wykazały, że wargatki potrafią zapamiętać ponad 100 „klientów”. W 2018 roku uczeni odkryli, że potrafią rozpoznać się w lustrze, co jest jednym z przejawów samoświadomości. Z kolei w ubiegłym roku dowiedzieliśmy się, że wargatki rozpoznają się też na fotografii po tym, jak obejrzały się w lustrze. Teraz japońscy uczeni donoszą, że wargatki potrafią wykorzystać lustro podczas... walki o terytorium.
Wspomniane na wstępie „stacje sanitarne” obsługiwane są przez parę dorosłych i grupę młodych lub grupę samic, którym przewodzi samiec. Jeśli samiec znika, jego rolę przejmuje jedna z samic. Część dorosłych wargatków żyje jednak samotnie i są terytorialne. Bronią swojego terenu przed intruzami. I właśnie ten aspekt ich życia postanowili wykorzystać naukowcy z Japonii. Chcieli sprawdzić, na ile dobrą reprezentację ciała mają wargatki.
Podczas pierwszej fazy eksperymentu naukowcy, których pracami kierował Taiga Kobayashi, pokazywali rybom trzymanym w akwarium zdjęcia innych wargatków. Ryby na zdjęciach były o 10% mniejsze i o 10% większe od osobnika w akwarium. W tym przypadku, bez względu na wielkość ryby, wargatki próbowały atakować intruza.
Następnie przy akwarium ustawiono lustro. Wówczas wargatki zmieniły swoje zachowanie. Atakowały mniejszych intruzów podpływania do lustra, ale gdy ryba na zdjęciu była większa, wargatki kilkukrotnie podpływały do lustra, by dobrze ocenić własne rozmiary i nie atakowały wyraźnie większych przeciwników.
Nasze odkrycie wskazuje, że ryby zmniejszyły swój poziom agresji nie dlatego, że przyzwyczaiły się do prezentowanego im po raz drugi zdjęcia, ale dlatego, że dzięki ustawieniu lustra były w stanie dostrzec 10-procentową różnicę w wielkości, stwierdzają badacze.
Oczywiście musimy pamiętać, że w naturze lustra nie występują. A to oznacza, że wargatki nauczyły się używać narzędzia dostarczonego przez człowieka.
Na zdjęciach, dostarczonych przez Taigę Kobayashiego, możemy zobaczyć wargatki w naturalnym środowisku oraz podczas eksperymentu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
NASA pokazała pierwsze zdjęcia i ujawniła wyniki wstępnej analizy próbek asteroidy Bennu, które trafiły niedawno za sprawą misji OSIRIS-REx. Badania pokazały, że Bennu zawiera bardzo dużo węgla i wody, co sugeruje, że w próbkach mogą znajdować się składniki, dzięki którym na Ziemi istnieje życie. Próbki dostarczone przez OSIRIS-REx to największa ilość fragmentów asteroidy bogatego w węgiel, jaka kiedykolwiek została przywieziona na Ziemię. Pozwolą one nam oraz przyszłym pokoleniom prowadzić prace nad początkiem życia na naszej planecie, stwierdził dyrektor NASA Bill Nelson.
Celem misji OSIRIS-REx było przywiezienie na Ziemię 60 gramów materiału. Misja padła jednak ofiarą własnego sukcesu, próbek pobrano więcej i już w przestrzeni kosmicznej pojawiły się problemy. Przez większą niż przewidywano ilość próbek, proces rozładowywania się opóźnił. W ciągu pierwszych dwóch tygodni naukowcy dokonali szybkiej analizy za pomocą skaningowego mikroskopu elektronowego, badań w podczerwieni, rozpraszania promieni rentgenowskich i analizy chemicznej pierwiastków. Wykorzystali też tomografię komputerową do stworzenia trójwymiarowych modeli komputerowych próbek. Już te wczesne badania pokazały wysoką zawartość węgla i wody.
Bardziej szczegółowe analizy potrwają kolejne dwa lata. Co najmniej 70% próbek Bennu będzie przechowywanych w Johnson Space Center na potrzeby przyszłych badań. Będą one udostępniane też uczonym z zagranicy. Już teraz wiadomo, że ich analizą zainteresowanych jest ponad 200 obcokrajowców.
Asteroida Bennu ma około 4,5 miliarda lat. Jedna z hipotez dotyczących początków życia na Ziemi mówi, że to właśnie tego typu i podobne obiekty przyniosły na naszą planetę składniki, potrzebne do jego powstania. Dlatego naukowcy mają nadzieję, że badając próbki pobrane bezpośrednio z asteroid pozwolą nam zajrzeć w przeszłość i dowiedzieć się, w jaki sposób powstało życie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Nowo odkryta planeta wielkości Neptuna ma gęstość większą od stali. Masa TOI-1853b jest niemal dwukrotnie większa niż planet jej rozmiarów. To zaś oznacza, że musi składać się ze znacznie większego odsetka skał, niż można by się spodziewać. Dlatego naukowcy z Włoch i Wielkiej Brytanii uważają, że planeta powstała w wyniku zderzenia innych planet.
Jak czytamy na łamach Nature, zderzenie odrzuciło lżejszy materiał, jak woda i atmosfera, pozostawiając planetę złożoną w olbrzymiej mierze ze skał. W naszym Układzie Słonecznym mamy dowody na potężne kolizje między planetami. Dowodem takim jest istnienie Księżyca. Dysponujemy też dowodami na zderzenia pomiędzy mniejszymi egzoplanetami. Wiemy, że egzoplanety są niezwykle zróżnicowane. Wiele z nich nie ma odpowiedników w Układzie Słonecznym, ale często te skaliste ciała niebieskie mają podobną masę i skład do naszych lodowych olbrzymów, Neptuna i Urana, mówi doktor Phil Carter z University of Bristol.
Naukowcy przeprowadzili symulacje komputerowe, które miały pokazać, w jaki sposób mogła powstać planeta taka jak TOI-1853b. Stwierdzili, że planety, które dały jej początek, prawdopodobnie były bogate w wodę. Musiały zderzyć się z prędkością większą niż 75 km/s, by powstała planeta o takich parametrach jak TOI-1853b, dodaje Carter.
Odkrycie potwierdza rolę zderzeń w powstawaniu planet. Zdobyta dzięki niemu wiedza pozwala łączyć to, co wiemy o ewolucji Układu Słonecznego z ewolucją innych systemów planetarnych. To niezwykle zaskakująca planeta. Zwykle planety zawierające tak dużo skał powinny tworzyć gazowe olbrzymy, jak Jowisz, którego gęstość jest podobna do gęstości wody. Tymczasem TOI-1853b ma rozmiary Neptuna, ale jest gęstsza niż stal. Wykazaliśmy, że taka planeta może powstać, jeśli doszło do wysokoenergetycznych zderzeń innych planet, podsumowuje Jingyao Dou z Bristolu.
Teraz badacze chcą jeszcze dokładniej przyjrzeć się TOI-1853b, spróbować dokładnie określić jej skład i poszukać ewentualnych resztek atmosfery.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dwóch naukowców z Japonii, Patryk Sofia Lykawka i Takashi Ito, zaprezentowali wyliczenia, które mogą wskazywać, że w Pasie Kuipera znajduje się planeta wielkości Ziemi. Dziewiąta Planeta, zwana też Planetą X, jest od wielu lat przedmiotem poszukiwań. Przynajmniej od czasu, gdy w 2016 roku dwóch profesorów z Caltechu (California Institute of Technology), zaprezentowali pracę, z której wynikało, że orbity 13 odległych obiektów z Pasa Kupiera ma nietypowe podobne orbity, a można je wyjaśnić obecnością planety.
Od czasu opublikowania pracy uczonych z Caltechu odkryto kolejne obiekty, których orbity pasowałyby do hipotezy o obecności nieznanej planety, rozpoczęto jej poszukiwania w średniowiecznych tekstach, pojawiła się też hipoteza, że w Układzie Słonecznym krąży pierwotna czarna dziura, a nie nieznana planeta.
Patryk Sofia Lykawka z Uniwersytetu Kindai oraz Takashi Ito z Narodowego Obserwatorium Astronomicznego Japonii i Uniwersytetu Technologii w Chiba opublikowali w The Astronomical Journal pracę, w której opisują właściwości obiektów z Pasa Kuipera, które wskazują na obecność planety.
Wykorzystaliśmy symulację komputerową problemu wielu ciał, by zbadać wpływ hipotetycznej planety w Pasie Kuipera na strukturę orbit obiektów transneptunowych znajdujących się w odległości większej niż 50 jednostek astronomicznych. Do stworzenia naszego modelu wykorzystaliśmy dane obserwacyjne, w tym dobrej jakości dane z Outer Solar System Origins Survey. Stwierdziliśmy, że obecność podobnej do Ziemi planety (o masie od 1,5 do 3 mas Ziemi), znajdującej się na odległej (półoś wielka ok. 250–500 j.a., peryhelium ok. 200 j.a.) orbicie o nachyleniu orbity wynoszącym ok. 30 stopni może wyjaśnić trzy podstawowe właściwości odległych obiektów z Pasa Kuipera: znaczącej populacji obiektów transneptunowych o orbitach poza wpływem grawitacyjnym Neptuna, znaczącą populację obiektów o wysokim nachyleniu orbity (> 45 stopni) oraz istnienie obiektów o wyjątkowo nietypowych orbitach (np. Sedna). Ponadto obecność proponowanej planety jest zgodna ze zidentyfikowanymi długoterminowo stabilnymi obiektami transneptunowymi, pozostającymi w rezonansie 2:1, 5:2, 3:1, 4:1, 5:1 i 6:1 z Neptunem. Ta populacja stabilnych obiektów jest często pomijana w innych badaniach, czytamy w artykule.
Pas Kuipera znajduje się za orbitą Neptuna, w odległości 30–50 jednostek astronomicznych od Ziemi. Zawiera on wiele małych obiektów. To właśnie w nim znajduje się Pluton. Mianem obiektów transneptunowych określa się okrążające Słońce planetoidy znajdujące się poza orbitą Neptuna.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ekosfera jest tradycyjnie definiowana, jako odległość pomiędzy gwiazdą, a planetą, która umożliwia istnienie wody w stanie ciekłym na planecie. To obszar wokół gwiazdy, w którym na znajdujących się tam planetach może istnieć życie. Jednak grupa naukowców z University of Georgia uważa, że znacznie lepsze byłoby określenie „ekosfery fotosyntezy”, czyli wzięcie pod uwagi nie tylko możliwości istnienia ciekłej wody, ale również światła, jakie do planety dociera z gwiazdy macierzystej.
O życiu na innych planetach nie wiemy nic pewnego. Jednak poglądy na ten temat możemy przypisać do jednej z dwóch szkół. Pierwsza z nich mówi, że na innych planetach ewolucja mogła znaleźć sposób, by poradzić sobie z pozornie nieprzekraczalnymi barierami dla życia, jakie znamy z Ziemi. Zgodnie zaś z drugą, życie w całym wszechświecie ograniczone jest uniwersalnymi prawami fizyki i może istnieć jedynie w formie podobnej do życia na Ziemi.
Naukowcy z Georgii rozpoczęli swoje badania od przyznania racji drugiej ze szkół i wprowadzili pojęcie „ekosfery fotosyntezy”. Znajdujące się w tym obszarze planety nie tylko mogą utrzymać na powierzchni ciekłą wodę – zatem nie znajdują się ani zbyt blisko, ani zbyt daleko od gwiazdy – ale również otrzymują wystarczająca ilość promieniowania w zakresie od 400 do 700 nanometrów. Promieniowanie o takich długościach fali jest na Ziemi niezbędne, by zachodziła fotosynteza, umożliwiające istnienie roślin.
Obecność fotosyntezy jest niezbędne do poszukiwania życia we wszechświecie. Jeśli mamy rozpoznać biosygnatury życia na innych planetach, to będą to sygnatury atmosfery bogatej w tlen, gdyż trudno jest wyjaśnić istnienie takiej atmosfery bez obecności organizmów żywych na planecie, mówi główna autorka badań, Cassandra Hall. Pojęcie „ekosfery fotosyntezy” jest zatem bardziej praktyczne i dające szanse na znalezienie życia, niż sama ekosfera.
Nie możemy oczywiście wykluczyć, że organizmy żywe na innych planetach przeprowadzają fotosyntezę w innych zakresach długości fali światła, jednak istnieje pewien silny przekonujący argument, że zakres 400–700 nm jest uniwersalny. Otóż jest to ten zakres fal światła, dla którego woda jest wysoce przezroczysta. Poza tym zakresem absorpcja światła przez wodę gwałtownie się zwiększa i oceany stają się dla takiego światła nieprzezroczyste. To silny argument za tym, że oceaniczne organizmy w całym wszechświecie potrzebują światła w tym właśnie zakresie, by móc prowadzić fotosyntezę.
Uczeni zauważyli również, że życie oparte na fotosyntezie może z mniejszym prawdopodobieństwem powstać na planetach znacznie większych niż Ziemia. Planety takie mają bowiem zwykle bardziej gęstą atmosferę, która będzie blokowała znaczną część światła z potrzebnego zakresu. Dlatego też Hall i jej koledzy uważają, że życia raczej należy szukać na mniejszych, bardziej podobnych do Ziemi planetach, niż na super-Ziemiach, które są uważane za dobry cel takich poszukiwań.
Badania takie, jak przeprowadzone przez naukowców z University of Georgia są niezwykle istotne, gdyż naukowcy mają ograniczony dostęp do odpowiednich narzędzi badawczych. Szczegółowe plany wykorzystania najlepszych teleskopów rozpisane są na wiele miesięcy czy lat naprzód, a poszczególnym grupom naukowym przydziela się ograniczoną ilość czasu. Dlatego też warto, by – jeśli ich badania polegają na poszukiwaniu życia – skupiali się na badaniach najbardziej obiecujących obiektów. Tym bardziej, że w najbliższych latach ludzkość zyska nowe narzędzia. Od 2017 roku w Chile budowany jest europejski Extremely Large Telescope (ELT), który będzie znacznie bardziej efektywnie niż Teleskop Webba poszukiwał tlenu w atmosferach egzoplanet. Z kolei NASA rozważa budowę teleskopu Habitable Exoplanet Observatory, który byłby wyspecjalizowany w poszukiwaniu biosygnatur na egzoplanetach wielkości Ziemi. Teleskop ten w 2035 roku miałby trafić do punktu L2, gdzie obecnie znajduje się Teleskop Webba.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.