Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Czterysta osób zostanie lada dzień włączonych do testów nowej szczepionki, której zadaniem jest zwalczenie nałogu palenia. Nad nowatorską terapią pracują badacze ze szwedzkiego Karolinska Institutet. Wybrani do badań ochotnicy pochodzą z trzech krajów skandynawskich.

Lena Wikingson, prezes pracującej nad lekiem firmy Independent Pharmaceutica, zapewniła, że wszyscy badani pacjenci będą mieli zapewniony kontakt z psychologiem, gdy tylko zajdzie taka potrzeba. To ważne, gdyż do testów klinicznych zgłosili się pacjenci, którzy osiągnęli wysoki stopień uzależnienia od nikotyny i wyrazili chęć zerwania ze swoim nałogiem.

Pełen kurs terapii ma objąć cztery szczepienia w jednomiesięcznych odstępach. Zgodnie z powszechnie przyjętymi regułami prowadzenia badań, połowa osób z grupy badanej otrzyma (oczywiście nie wiedząc o tym) niefunkcjonalny odpowiednik szczepionki, czyli placebo. Zapewni to minimalizację wpływu psychiki pacjenta na wynik testu. Ostatecznym wykładnikiem skuteczności terapii będzie liczba osób wyleczonych z nałogu w grupie przyjmującej prawdziwy preparat, w porównaniu do grupy kontrolnej, przyjmującej placebo. Stosowne podsumowanie zostanie wykonane w rok po zakończeniu serii szczepień.

Preparat, który nazwano Niccine (od anielskich słów nicotine, nikotyna, i vaccine, oznaczającego szczepionkę), ma za zadanie wytworzyć we krwi przyjmującego ją człowieka przeciwciała skierowane przeciw nikotynie. Oznacza to, że zaraz po zapaleniu papierosa dochodzi do "przechwycenia" nikotyny przez przeciwciała, zanim dotrze ona do mózgu. Dzięki temu palacz pozbawiony jest przyjemności z palenia, przez co - przynajmniej teoretycznie - powinien rzucić swój nałóg.

To, co w teorii brzmi banalnie, w praktyce okazało się nie lada wyzwaniem. Głównym problemem, z którym musieli sobie poradzić naukowcy, jest fakt, że cząsteczki nikotyny są stosunkowo nieduże i w związku z tym w normalnych warunkach organizm człowieka nie wytwarza przeciwko nim przeciwciał. Aby rozwiązać ten problem, połączono nikotynę z tzw. cząsteczką nośnikową, której zadaniem jest "zwabienie" komórek systemu immunologicznego. Są one zdolne do wykrycia kompleksu nośnika z nikotyną i wytworzenia przeciwko niemu przeciwciał, z których część będzie reagowała na nośnik, a część - na samą nikotynę. Dzięki temu we wstępnych testach udało się wytworzyć odpowiednio dużą liczbę przeciwciał oraz komórek, które zostaną szybko pobudzone w razie ponownego kontaktu z nikotyną.

Prace nad Niccine trwały dotąd 10 lat. Prawdopodobnie potrzeba będzie kolejnych kilku, zanim ukończone zostaną testy kliniczne preparatu. Na razie nie jest znana jego planowana cena rynkowa ani data jego pojawienia się w obrocie.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Połączenie łagodnej infekcji i szczepionki wydaje się najbardziej efektywnym czynnikiem chroniącym przed COVID-19, informują naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA). Główny wniosek z naszych badań jest taki, że jeśli ktoś zachorował na COVID, a następnie został zaszczepiony, to nie tylko znacząco zwiększa się u niego liczba przeciwciał, ale rośnie ich jakość. To zaś zwiększa szanse, że przeciwciała te poradzą sobie z kolejnymi odmianami koronawirusa, mówi profesor Otto Yang z wydziałul chorób zakaźnych, mikrobiologii, immunologii i genetyki molekularnej.
      Wydaje się, że kolejne wystawienia układu odpornościowego na kontakt z białkiem kolca (białkiem S) pozwala układowi odpornościowemu na udoskonalanie przeciwciał u osoby, która chorowała na COVID-19. Uczony dodaje, że nie jest pewne, czy takie same korzyści odnoszą osoby, które przyjmują kolejne dawki szczepionki, ale nie chorowały.
      Grupa Yanga porównała przeciwciała 15 osób, które były zaszczepione, ale nie zetknęły się wcześniej z wirusem SARS-CoV-2 z przeciwciałami 10 osób, które nie były jeszcze zaszczepione, ale niedawno zaraziły się koronawirusem. Kilkanaście miesięcy później 10 wspomnianych osób z drugiej grupy było w pełni zaszczepionych i naukowcy ponownie zbadali ich przeciwciała.
      Uczeni sprawdzili, jak przeciwciała reagują na białko S różnych mutacji wirusa. Odkryli, że zarówno w przypadku osób zaszczepionych, które nie chorowały oraz tych, które chorowały, ale nie były szczepione, możliwości zwalczania wirusa przez przeciwciała spadały w podobnym stopniu gdy pojawiła się nowa mutacja. Jednak gdy osoby, które wcześniej chorowały na COVID-19, były rok po chorobie już w pełni zaszczepione, ich przeciwciała były zdolne do rozpoznania wszystkich mutacji koronawirusa, na których je testowano.
      Nie można wykluczyć, że odporność SARS-CoV-2 na działanie przeciwciał może zostać przełamana poprzez ich dalsze dojrzewanie w wyniki powtarzanej wskutek szczepienia ekspozycji na antygen, nawet jeśli sama szczepionka nie jest skierowana przeciwko danemu wariantowi, stwierdzają naukowcy. Przypuszczają oni, że kolejne szczepienia mogą działać podobnie jak szczepienia po przechorowaniu, jednak jest to tylko przypuszczenie, które wymagają weryfikacji.
      Ze szczegółami badań można zapoznać się w artykule Previous Infection Combined with Vaccination Produces Neutralizing Antibodies with Potency against SARS-CoV-2 Variants.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Specjalistki z Międzyuczelnianego Wydziału Biotechnologii Uniwersytetu Gdańskiego i Gdańskiego Uniwersytetu Medycznego - prof. Krystyna Bieńkowska-Szewczyk, dr Katarzyna Grzyb i mgr Anna Czarnota - pracują nad szczepionką przeciw zakażeniom spowodowanym wirusami zapalenia wątroby typu C i B (HCV i HBV). Urząd wydał już decyzję o przyznaniu patentu na ich wynalazek ("Chimeryczne cząsteczki wirusopodobne eksponujące sekwencje antygenowe wirusa HCV do zastosowania w leczeniu prewencyjnym zakażenia wirusem HCV i/lub HBV").
      Szczepionka na wagę złota
      HCV stanowi poważny problem medyczny. Wg Głównego Inspektoratu Sanitarnego (GIS), szacuje się, że co roku 1,4 mln zgonów jest spowodowanych odległymi następstwami przewlekłych zakażeń wirusami wywołującymi wirusowe zapalenie wątroby B lub C (marskość, rak wątrobowokomórkowy). WZW C [wirusowe zapalenie wątroby typu C] jest główną przyczyną raka wątroby w Europie i USA. W tych regionach świata WZW C jest najczęstszym powodem dokonywania przeszczepów wątroby.
      Niestety, mimo badań nie ma jeszcze skutecznej szczepionki. Główną przeszkodą jest duża zmienność genetyczna HCV. Z tego powodu idealna szczepionka powinna wzbudzać odpowiedź immunologiczną przeciw najbardziej konserwowanym fragmentom białek wirusowych.
      Gdański wynalazek
      Wynalazek dotyczy rekombinowanych cząstek wirusopodobnych eksponujących na swojej powierzchni wybrane sekwencje antygenowe pochodzące z wirusa zapalenia wątroby typu C do zastosowania jako immunogenna szczepionka przeciwko zakażeniom spowodowanym wirusami zapalenia wątroby typu C i/lub B – wyjaśnia prof. Bieńkowska-Szewczyk.
      Wynalazek powstał w ramach realizacji projektu NCN Preludium 12. Jego szczegóły opisano w pracy eksperymentalnej pt. "Specific antibodies induced by immunization with hepatitis B virus-like particles carrying hepatitis C virus envelope glycoprotein 2 epitopes show differential neutralization efficiency".
      Dr Grzyb tłumaczy, że cząstki wirusopodobne cieszą się obecnie dużym zainteresowaniem, gdyż są bardzo podobne do wirusów, stąd też wynika ich wysoka immunogenność. Nie są jednak wirusami, bo nie zawierają materiału genetycznego wirusa, a tym samym nie mają zdolności do namnażania.
      Zdolność tworzenia cząstek wirusopodobnych ma małe białko powierzchniowe wirusa zapalenia wątroby typu B (ang. hepatitis B virus small surface protein, sHBsAg). sHBsAg jest wykorzystywane w szczepionkach chroniących przed zakażeniem wirusem zapalenia wątroby typu B. Jak wyjaśniono w opisie projektu na stronie Narodowego Centrum Nauki, ze względu na obecność w strukturze białka sHBsAg silnie immunogennej, hydrofilowej pętli dobrze tolerującej insercje nawet dużych fragmentów obcych białek, sHBsAg było wielokrotnie proponowane jako nośnik obcych antygenów.
      W naszym wynalazku wyeksponowanie silnie konserwowanych fragmentów białek wirusa HCV na powierzchni cząstek wirusopodobnych opartych na białku sHBsAg [w hydrofilową pętlę  białka sHBsAg wstawiono silnie konserwowane sekwencje glikoproteiny E2 wirusa HCV] pozwoliło na stworzenie biwalentnych immunogenów wzbudzających odpowiedź zarówno przeciwko wirusowi HCV, jak i HBV. W przyszłości nasze rozwiązanie mogłoby być wykorzystane jako skuteczna szczepionka nowej generacji chroniąca przed zakażeniem tymi groźnymi patogenami - podsumowuje mgr Anna Czarnota.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na ospę prawdziwą, jedną z najbardziej śmiercionośnych i najdłużej trapiących ludzkość chorób, nie zapada obecnie nikt. Ostatnie znane przypadki naturalnej infekcji miały miejsce w 1977 roku w Somalii. Natomiast ostatnimi ofiarami ospy było dwoje Brytyjczyków. W 1978 roku fotograf medyczna Janet Parker zaraziła się ospą na University of Birmingham. Obwiniany o jej chorobę profesor Henry Bedson, który prowadził badania nad wirusem ospy, popełnił samobójstwo. Oboje zmarli w tym samym dniu.
      W 1980 roku WHO ogłosiła, że świat jest wolny od ospy prawdziwej. To jak dotychczas jedyny przypadek w historii, kiedy dzięki świadomemu wysiłkowi ludzkości udało się zlikwidować (eradykować) chorobę zakaźną trapiącą ludzi. Inną taką chorobą zakaźną jest księgosusz (pomór bydła), ogłoszony chorobą eradykowaną w 2010 roku.
      Jak to się jednak stało, że istniejąca od tysiącleci ospa prawdziwa, która w samym tylko XX wieku zabiła 300 milionów osób przestała stanowić zagrożenie? Odpowiedzią są szczepienia. To właśnie dzięki nim i ogłoszonemu w 1967 roku programowi  jej eradykacji nie musimy obawiać się tej śmiercionośnej choroby.
      Nieco historii
      Ludzkość od dawna wiedziała, że jeśli komuś udało się przeżyć ospę – a nie było to takie pewne, gdyż np. w XVIII wieku zabijała ona 20–60 procent zarażonych – stawał się odporny na kolejną infekcję. Wiedzę tę wykorzystywano w praktyce. Już w 430 roku p.n.e. ozdrowieńcy byli wzywani do opieki nad chorymi.
      Pojawiła się koncepcja inokulacji. To celowe wprowadzanie do organizmu, np. poprzez nacięcie na skórze, wydzielin osoby chorej, ale chorującej w stopniu łagodnym. Alternatywnym sposobem było sproszkowanie strupów ofiary ospy i wdmuchnięcie ich do nosa osoby zdrowej. Takie działania powodowały, że człowiek co prawda chorował, ale zwykle przechodził chorobę łagodniej. Jedynie około 2% inokulowanych osób rozwijało poważną infekcję i umierało czy stanowiło zagrożenie dla innych. Ryzyko było więc wyraźnie mniejsze.
      Pod koniec XVIII wieku Edward Jenner, angielski lekarz, który sam jako dziecko był inokulowany, zaczął zastanawiać się, jak to się dzieje, że kobiety zajmujące się zawodowo dojeniem krów, nie chorują i nie umierają na ospę. Wszystko wskazywało na to, że mają one kontakt z łagodną dla człowieka ospą krową (krowianką), i gdy się nią zarażą, są chronione przed śmiertelną ospą prawdziwą. Jenner postanowił przetestować tę koncepcję. W 1796 roku materiałem pobranym od kobiety zarażonej krowianką inokulował 8-letniego chłopca, a kilka tygodni później inokulował go materiałem od osoby chorującej na ospę. U chłopca nie pojawiły się żadne oznaki choroby. Kolejne eksperymenty wykazały, że taka procedura jest znacznie bardziej bezpieczna od standardowej inokulacji. Tym samym Jenner zapoczątkował epokę szczepień, wprowadzania do organizmu zdrowego człowieka znacznie słabiej działającego patogenu, który uodparnia nas na działanie zjadliwego, niebezpiecznego patogenu.
      Są szczepionki, są i antyszczepionkowcy
      Metoda Jennera szybko zdobywała popularność zarówno wśród elit jak i zwykłych obywateli. Jenner nazwał całą procedurę vaccination (szczepienie) od łacińskiego vacca (krowa) i vaccinia (krowianka). Jednak już kilka lat później pojawili się pierwsi antyszczepionkowcy. Sceptycyzm wobec metody Jennera wynikał głównie z nieufności i niewiedzy. Do metody Jennera podchodzono bowiem nieufnie na tych terenach, gdzie krowianka nie występowała, ludzie nie znali więc ochronnych skutków infekcji tą chorobą.
      Opublikowano książeczkę, w której krowiankę przedstawiano jako niebezpieczną chorobę i opisywano rzekome przypadki zarażenia ludzi „krowim syfilisem” w wyniku szczepień. Po publikacji zaczęły pojawiać się informacje o kolejnych przypadkach „krowiego syfilisu”, których to autor książeczki nie omieszkał umieścić w kolejnym wydaniu. Ostrzegał też, że szczepienie to eksperyment medyczny, prowadzony bez odpowiedniego rozwagi.
      Kolejny tego typu tekst został opublikowany pod pseudonimem „R. Squirrel, doktor medycyny” przez aptekarza i politycznego radykała Johna Gale'a Johnesa. Twierdził on, że wcześniej prowadzona inokulacja była w pełni bezpieczna, a Jenner tak naprawdę zaraża ludzi skrofulozą (gruźlicą węzłów chłonnych). W jeszcze innym dziele opisano przypadki trzech pacjentów, którzy zmarli w wyniku sepsy po szczepieniu – co nie może dziwić biorąc pod uwagę ówczesny poziom higieny – oraz dziecka, u którego rok po szczepieniu pojawiły się na czole wielkie purpurowe bulwy. W jeszcze innych dziełach czytamy o świerzbie wywołanym rzekomo przez szczepienie, a całość zilustrowano rysunkiem chłopca, którego twarz zamieniła się w twarz wołu. Oczywiście w wyniku szczepienia.
      Kukułką w szczepienia
      Antyszczepionkowcy nie ograniczyli się jednak tylko do tego, Przez ponad 100 lat, walcząc z koncepcją Jennera, używali przykładu... kukułki. Otóż w 1788 roku Jenner opublikował wyniki swoich badań nad kukułkami, w których stwierdził, ze młode, wyklute z jaja podrzuconego przez kukułkę innemu gatunkowi, wyrzuca z gniazda młode tego gatunku. Wielu przyrodników uznało tę koncepcję za absurdalną. I antyszczepionkowcy przez dekady wykorzystywali opinię tych przyrodników, by zdyskredytować osiągnięcia Jennera na polu szczepień. W końcu w 1921 roku, dzięki wykorzystaniu fotografii potwierdzono, że Jenner miał rację co do kukułek. Podobnie zresztą, jak miał rację odnośnie szczepień.
      Jak więc działają szczepionki?
      Nasz układ odpornościowy możemy podzielić na dwie zasadnicze części: wrodzoną (nieswoistą) oraz adaptacyjną (swoista). Z odpornością wrodzoną się rodzimy. Otrzymujemy ją po matce i stanowi on pierwszą linię obrony naszego organizmu. Układ odpornościowy atakuje wszystko, co uzna za obce. Odpowiedź nieswoista następuje natychmiast, a do akcji wkraczają granulocyty, makrofagi czy monocyty. Jednak nie jest to reakcja zbyt precyzyjna i nie zawsze w jej wyniku patogeny zostaną usunięte. Co więcej, ten rodzaj reakcji nie wytwarza pamięci immunologicznej.
      Do tego, by organizm zapamiętał dany patogen potrzebna jest bardziej wyspecjalizowana odpowiedź swoista, kiedy to organizm wytwarza przeciwciała zwalczające konkretne zagrożenie. To bardziej precyzyjne uderzenie w patogen, jednak od momentu infekcji do pojawienia się skutecznej odpowiedzi swoistej musi minąć nieco czasu. Gdy już jednak układ odpornościowy wytworzy odpowiedź swoistą i zwalczy patogen, zapamiętuje go i przy kolejnej infekcji szybko przystępuje do działania, wyposażony już w specjalistyczne narzędzia do walki z konkretnym wirusem czy bakterią.
      Patogeny, czy to wirusy, bakterie, grzyby czy pasożyty, składają się z wielu różnych części, które często są charakterystyczne zarówno dla nich, jak i wywoływanych chorób. Takie części, które prowokują organizm do wytworzenia przeciwciał nazywa się antygenami. Gdy układ odpornościowy po raz pierwszy napotyka na antygen, potrzebuje nieco czasu, by wytworzyć przeciwciała. Jednak gdy już je uzyska, produkuje też specyficzne dla nich komórki pamięci. Komórki te pozostają w organizmie nawet po zwalczeniu patogenu. Dlatego też gdy zetkniemy się z nim po raz kolejny, nasz układ odpornościowy szybko przystępuje do ataku.
      Szczepienia zaś mają służyć wcześniejszemu nauczeniu układu odpornościowego rozpoznawania patogenu, bez potrzeby czekania na tę pierwszą infekcję, która może przecież okazać się bardzo niebezpieczna. Dzięki nim nasz układ odpornościowy uczy się bowiem, jak rozpoznać napastnika i gdy zetknie się z nim powtórnie, szybciej i łatwiej sobie z nim poradzi. Wszystkie szczepionki działają poprzez wcześniejsze – bezpieczne i kontrolowane – wystawienie organizmu na kontakt z patogenem lub jego fragmentem po to, by w przypadku ponownego kontaktu, układ odpornościowy był przygotowany do zwalczania wirusa lub bakterii.
      Rodzaje szczepionek
      Obecnie nikt nie wdmuchuje nam do nosa sproszkowanych strupów i nie nacina nam skóry, by wprowadzić materiał pobrany od chorej osoby. Stosowane są znacznie skuteczniejsze i bezpieczniejsze metody.
      Jedną z nich są szczepionki z żywym, atenuowanym wirusem lub bakterią. Zawierają one atenuowany czyli osłabiony patogen, który nie stanowi zagrożenia dla osób o prawidłowo działającym układzie odpornościowym. Jako, że takie patogeny są najbliższe temu, z czym możemy się zetknąć, szczepionki tego typu są świetnymi nauczycielami dla układu odpornościowego. W ten sposób szczepi się na odrę, świnkę czy różyczkę. To bardzo efektywny sposób zabezpieczenia przed chorobami. Jednak ze względu na to, że mimo wszystko mamy tutaj do czynienia z żywym patogenem, lepiej dmuchać na zimne. Szczepionek takich nie podaje się więc osobom o osłabionym układzie odpornościowym czy kobietom w ciąży.
      Istnieją również szczepionki z inaktywowanym, zabitym, patogenem. Nie są one jednak tak skuteczne, jak szczepionki z patogenem żywym, dlatego zwykle wymagają podania kilku dawek. Za przykład mogą tutaj służyć szczepionki przeciwko polio czy wściekliźnie.
      Dwa wymienione tutaj rodzaje to starsze typy szczepionek. Nowsze rodzaje zawierają nie całe patogeny, a ich fragmenty, antygeny. Szczepionki takie są bardziej jednorodne, podobne do siebie, niż szczepionki z patogenami. Są w wyższym stopniu powtarzalne i powodują mniej działań niepożądanych. Jednak zwykle też wywołują słabszą odpowiedź układu odpornościowego, niż szczepionki zawierające całe bakterie czy wirusy.
      Najnowszym rodzajem szczepionek, o których wszyscy usłyszeliśmy przy okazji pandemii COVID-19, są szczepionki wektorowe i mRNA. Oba rodzaje nie zawierają ani patogenu, ani jego antygenu. Zawierają zaś instrukcję, w jaki sposób nasz organizm ma sobie taki antygen samodzielnie wyprodukować.
      W szczepionkach wektorowych nośnikiem instrukcji – wektorem – jest zmodyfikowany wirus, pozbawiony genów powodujących chorobę oraz pozbawiony genów umożliwiającym mu namnażanie się. Do genomu tego nieszkodliwego wirusa wprowadzana jest dodatkowo instrukcja produkcji antygenu drobnoustroju, przed którym chcemy się chronić. Zatem, w przeciwieństwie do prawdziwej infekcji, do organizmu nie trafia pełny materiał genetyczny wirusa, a jego fragment. Nie ma zatem możliwości, by nasze komórki wyprodukowały wirusa. To, co się dzieje po szczepieniu, bardzo przypomina prawdziwą infekcję.
      Wektor wnika do komórek i wprowadza genetyczną instrukcję produkcji antygenu do jądra komórek naszego organizmu. Jako, że nasz wektor pozbawiony jest możliwości namnażania się, nie rozprzestrzenia się po organizmie. Ponadto co prawda jego DNA jest wprowadzane do jądra komórkowego, ale nie jest włączane do naszego genomu i nie replikuje się w kolejnych cyklach komórkowych. Na podstawie tego DNA powstaje RNA, które przemieszcza się z jądra komórkowego do cytoplazmy, tam staje się matrycą do produkcji antygenu. Ten zaś jest prezentowany na powierzchni „zakażonej” komórki. Układ odpornościowy rozpoznaje wrogi antygen, zwalcza go, zabijając komórkę i jednocześnie zapamiętuje antygen. Następnym razem będzie gotowy by szybko zaatakować wirusa. Zarówno ekspresja genów wirusa, jak i odpowiedź immunologiczna są krótkotrwałe i ograniczone do miejsca wstrzyknięcia szczepionki. To jednak wystarczy, by układ odpornościowy zapamiętał wroga na przyszłość.
      Szczepionki wektorowe mają zarówno wady, jak i zalety. Wywołują silną odpowiedź immunologiczną, na której nam zależy, a technologia ich produkcji jest dobrze opanowana. Jeśli jednak organizm już wcześniej zetknął się z wirusem użytym w roli wektora, to może szybko zacząć go zwalczać, przez co skuteczność szczepionki będzie niższa. Ponadto produkcja takich szczepionek jest dość skomplikowana.
      Powyższy problem rozwiązują szczepionki mRNA. Ich zastosowanie polega na wstrzyknięciu do organizmu wolnego (tj. niezwiązanego z nośnikiem, np. wirusem) materiału genetycznego w formie mRNA, który jest następnie pobierany przez komórki i poddawany ekspresji.
      Po wniknięciu do organizmu mRNA ze szczepionki jest przetwarzane przez organizm tak samo, jak „własne” mRNA z naszych komórek, tzn. na podstawie zawartej w nim instrukcji wytwarzane jest białko o ściśle określonej budowie, symulującej immunologiczną „sygnaturę” danego patogenu. Białko takie jest wykrywane przez układ immunologiczny jako obce i powoduje wytworzenie odpowiedzi oraz pamięci immunologicznej. Dzięki temu kiedy kolejny raz dojdzie do kontaktu z takim samym antygenem (tym razem na powierzchni wirusa z „prawdziwej” infekcji), reakcja będzie szybka i skuteczna – tak bardzo, że często nawet nie będziemy świadomi, że organizm właśnie zwalczył śmiertelne zagrożenie.
      Takie RNA w ogóle nie wnika do jądra komórkowego, zatem nie ma możliwości włączenia się do DNA naszych komórek ani replikacji. Prowadzi ono wyłącznie do wytworzenia antygenów, po czym ulega degradacji. Również i tutaj mamy do czynienia z krótkotrwałą obecnością w naszym organizmie materiału genetycznego wirusa, a jego pozostałości są w naturalny sposób szybko usuwane. Pozostaje nam po nim jedynie pamięć układu odpornościowego, przygotowanego dzięki szczepionkom na reakcję w przypadku prawdziwej infekcji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na Uniwersytecie Kalifornijskim w San Diego (UCSD) opracowano potencjalną szczepionkę przeciwko COVID-19, której przechowywanie nie wymagają użycia lodówki. Jej głównymi składnikami są wirusy roślin lub bakterii. Szczepionka jest na wczesnym etapie rozwoju, ale badania na myszach wykazały już, że po jej podaniu w organizmach zwierząt pojawił się bardzo wysoki poziom przeciwciał skierowanych przeciwko SARS-CoV-2. Jeśli okaże się, że szczepionka jest bezpieczna i skuteczna u ludzi, znakomicie ułatwi to i obniży koszty dystrybucji szczepionek, szczególnie na obszarach wiejskich i w ubogich krajach.
      Najbardziej ekscytujący jest fakt, że nasza technologia pozwala stworzyć termiczne stabilną szczepionkę, więc można będzie ją dostarczyć tam, gdzie nie ma odpowiednio wydajnych chłodziarek, czy gdzie nie można dojechać ciężarówką wyposażoną w tego typu urządzenia, mówi profesor nanoinżynierii Nicole Steinmetz, dyrektor Center for NanoImmunoengineering na UCSD.
      Uczeni z Kalifornii stworzyli dwie szczepionki. W pierwszej użyli wirusa mozaiki wspięgi chińskiej (CMPV). To wirus roślinny, którym od dawna budzi zainteresowanie naukowców. Wykorzystywany jest zarówno w pracach nad hybrydowymi materiałami umożliwiającymi stworzenie układów elektronicznych kompatybilnych z organizmami żywymi, jak i w badaniach z dziedziny immunoterapii antynowotworowej. Druga szczepionka powstała przy użyciu bakteriofagu Qbeta, który infekuje bakterie, w tym Escherichię coli.
      Obie szczepionki powstały według podobnego przepisu. Naukowcy użyli wspięgi chińskiej oraz E. coli do wyhodowania milionów kopii CMPV i Qbeta, które miały kształt kulistych nanocząstek. Następnie zebrali te nanocząstki i do ich powierzchni przyłączyli niewielki fragment białka S wirusa SARS-CoV-2. Z zewnątrz całość przypomina koronawirusa, więc układ odpornościowy może nauczyć się rozpoznawać patogen, a przyłączone na powierzchni fragmenty białka stymulują go do ataku. Ani bakteriofagi ani wirusy roślinne nie są zaś w stanie zainfekować ludzi czy zwierząt.
      Naukowcy wymieniają kilka olbrzymich zalet swoich szczepionek. Po pierwsze, można będzie je tanio produkować w dużych ilościach. Hodowla roślin jest dość prosta i nie wymaga złożonej infrastruktury. Z kolei fermenacja z udziałem bakterii to bardzo dobrze poznany proces, mówi Steinmetz. Po drugie, nanocząstki wirusów roślinnych i bakteriofagów są niezwykle stabilne w wysokich temperaturach. Wytworzone z nich szczepionki nie muszą być więc przechowywane w chłodzie. Mogą być też poddawane procesom produkcyjnym, w których używa się wysokich temperatur. Naukowcy z San Diego użyli takiego procesu do wyprodukowania szczepionek w formie plastrów i implantów, w ramach którego szczepionki były mieszane i rozpuszczane z polimerami w temperaturze bliskiej 100 stopniom Celsjusza.
      Dzięki temu zyskujemy więcej opcji podania szczepionki. Możliwe będzie bowiem albo jednorazowe wszczepienie niewielkiego biokompatybilnego implantu, który przez miesiąc będzie stopniowo uwalniał szczepionkę, albo zaoferowanie plastrów ze szczepionką i mikroigłami, które można będzie samodzielnie przylepić do skóry i w ten sposób samemu podać sobie szczepionkę. Wyobraźmy sobie, że takie plastry możemy wysłać pocztą do ludzi najbardziej narażonych na COVID-19. Nie musieliby oni wtedy opuszczać swoich domów i narażać się, by udać się do punktu szczepień, mówi profesor Jan Pokorski z UCSD Jacobs School of Engineering, którego zespół popracował implanty i plastry. Z kolei implanty przydałyby się osobom, które co prawda decydują się zaszczepić, ale z jakichś powodów nie chcą lub nie mogą zgłosić się po drugą dawkę, dodaje Pokorski.
      Podczas testów nowe szczepionki podawano myszom na wszystkie trzy sposoby: tradycyjnie za pomocą strzykawki, za pomocą implantu oraz za pomocą plastra. We wszystkich przypadkach w ich organizmach pojawiły się wysokie poziomy przeciwciał.
      Co ciekawe, te same przeciwciała neutralizowały wirusa SARS-CoV. Stało się tak dlatego, że zespół Steinmetz wybrał odpowiedni fragment białka S, który został użyty w szczepionkach. Jedna z jego części, epitop, jest niemal identyczny u SARS-CoV-2 i SARS-CoV. Fakt, że dzięki epitopowi układ odpornościowy uczy się rozpoznawać też innego śmiercionośnego wirusa, jest niezwykle ważny. Daje to nadzieję, że możemy stworzyć wspólną dla koronawirusów szczepionkę, która będzie chroniła także w przypadku przyszłych pandemii, cieszy się Matthew Shin.
      Kolejną zaletą tego konkretnego epitopu jest fakt, że dotychczas nie został on zmieniony przez żadną znaną mutację SARS-CoV-2. Dzieje się tak, gdyż epitop ten znajduje się w regionie białka S, które nie łączy się bezpośrednio z komórkami. Tymczasem podawane obecnie szczepionki przeciwko COVID-19 korzystają z epitopów z regionów, którymi białko S przyłącza się do komórek. A w regionach tych dochodzi do wielu mutacji. Niektóre z nich powodują, że wirus staje się bardziej zaraźliwy. Epitopy z regionów nie przyłączających się do komórek, nie ulegają tak szybkim zmianom.
      To jednak nie wszystkie zalety techniki opracowanej przez naukowców z UCSD. Nawet jeśli te szczepionki nie sprawdzą się przeciwko COVID-19, można je będzie szybko wykorzystać przeciwko innym wirusom, przekonuje Steinmetz. Wystarczy bowiem tą samą metodą uzyskać nanocząstki wirusów roślinnych lub bakteriofagów i dołączyć do nich fragmenty wirusów, innych patogenów czy biomarkerów, na które szczepionki mają działać. Używamy tych samych nanocząstek, tych samych polimerów, tego samego sprzętu i tych samych procesów chemicznych do połączenia wszystkiego w całość. Jedyną różnicą jest antygen, który przyłączamy do powierzchni.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Specjaliści z Duke Human Vaccine Institute odkryli nowy typ przeciwciał antyglikanowych (Ab), które łączy się z zewnętrzną otoczką takich wirusów jak HIV, prowadząc do ich neutralizacji. Nowo zidentyfikowane przeciwciała, które znaleziono zarówno u ludzi jak i makaków, mogą doprowadzić do powstania szczepionek działających zarówno przeciwko SARS-CoV-2 jak i patogenom grzybiczym.
      "To zupełnie nowy rodzaj obrony gospodarza. Te przeciwciała mają spiralny kształt i mogą skutecznie bronić organizmu przed różnymi patogenami", ekscytuje się Barton Haynes, dyrektor Duke Human Vaccine Institute.
      Na powierzchni wielu patogenów, zarówno HIV, SARS-CoV-2 jak i grzybów, dochodzi do ekspresji glikanów. W przypadku HIV ponad 50% zewnętrznej otoczki stanowią glikany. Dlatego też naukowcy od dawna chcieliby wziąć je na cel, znaleźć przeciwciało je rozbijające, co umożliwiłoby neutralizację wirusa. Jednak nie jest to takie proste.
      HIV otoczony jest cukrami, które wyglądają jak glikany gospodarza. Dla układu odpornościowego wirus wygląda więc tak, jak część organizmu, a nie śmiercionośny patogen. Hayes i jego zespół odkryli nowy typ przeciwciał, które potrafią rozpoznać glikany na powierzchni HIV. Uczeni nazwali je przeciwciałami FDG (Fab-dimerized glycan-reactive). Dotychczas w nauce pojawiło się tylko jedno doniesienie o podobnych przeciwciałach. Zidentyfikowano je 24 lata temu i oznaczono jako 2G12. Dotychczas Ab 2G12 były jedynymi znanymi przeciwciałami reagującymi wyłącznie na glikany na powierzchni HIV.
      Teraz naukowcy z Duke zidentyfikowali całą klasę takich przeciwciał. Zawierają one nigdy wcześniej nie obserwowaną strukturę, która przypomina 2G12. Struktura ta pozwala przeciwciałom na bardzo mocne wiązanie się z pewnym specyficznym miejscem w otoczce HIV, ale nie na innych powierzchniach.
      Cechy strukturalne i funkcjonalne tych przeciwciał mogą zostać wykorzystane do zaprojektowania szczepionek biorących na cel glikany HIV, co zapoczątkuje odpowiedź limfocytów B i neutralizację wirusa, stwierdzają autorzy badań.
      Naukowcy zauważyli, że przeciwciała FDG przyłączają się też do Candida albicans oraz różnych wirusów, w tym SARS-CoV-2. Konieczne są dalsze badania dotyczące zarówno bezpieczeństwa stosowania tych przeciwciał, jak i sposobów ich ewentualnego wykorzystania w leczeniu.
      Szczegóły badań opisano w artykule Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...