Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Dzięki pracom naukowców z Krakowa nauka zbada zjawiska trwające attosekundy
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Instytut Fizyki Jądrowej PAN w Krakowie rozpoczął nową akcję popularyzacyjną - cykl filmów Kanapa Fizyków. Miejsca na tej szczególnej kanapie zajmują naukowcy IFJ PAN. W pierwszych odcinkach odpowiedzą na pytania przysłane w trakcie Nocy Naukowców 2020. W następnych zajmą się zaś pytaniami zadanymi mailowo; można podać, ile się ma lat, wówczas naukowcy dostosują odpowiedzi do wieku sygnalizującego problem. Kolejne filmy będą się pojawiać w piątki o 14. Wszystkie będą publikowane na stronie Instytutu, a także na YouTube'ie i Facebooku.
W pierwszym odcinku Kanapy Fizyków specjaliści - dr Maciej Trzebiński (moderator), prof. dr hab. Jerzy W. Mietelski, dr hab. Paweł T. Jochym i dr hab. Paweł Brückman de Renstrom - 1) rozmawiali o podróżach w czasie, a konkretnie o tym, czy wymyślimy wehikuł czasu (0:24), 2) zastanawiali się, jak wyglądałby spadek z nieskończonej wysokości (2:17), a także 3) "brutalnie" odpowiadali na pytanie, jak wygląda pole magnetyczne w nadprzewodniku (6:27).
Część tematów przyszłych Kanap można poznać w zapowiedzi cyklu. Pytania należy przesyłać na adres KanapaFizykow@ifj.edu.pl
« powrót do artykułu -
przez KopalniaWiedzy.pl
Planetarny detektor cząstek promieniowania kosmicznego CREDO, tworzony przez podmioty naukowe i edukacyjne oraz indywidualnych pasjonatów z niemal wszystkich kontynentów, ukonstytuował swoją działalność. W przedsięwzięciu, próbującym weryfikować m.in. hipotezy dotyczące kwantowej struktury czasoprzestrzeni czy potencjalnych związków między promieniowaniem kosmicznym a trzęsieniami ziemi bądź zachorowalnością na raka, może współuczestniczyć każdy właściciel smartfona.
Międzynarodowy projekt Cosmic-Ray Extremely Distributed Observatory (CREDO), zainicjowany w 2016 roku w Instytucie Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie, właśnie przekształca się w formalną strukturę. Na mocy podpisanych porozumień, w budowie ogólnoplanetarnego detektora cząstek promieniowania kosmicznego CREDO uczestniczy obecnie już 25 podmiotów instytucjonalnych z 12 krajów na pięciu kontynentach: dziewięć z Polski, trzy ze Stanów Zjednoczonych, po dwa z Australii, Czech i Ukrainy oraz po jednym z Gruzji, Meksyku, Nepalu, Rosji, Słowacji, Urugwaju i Węgier. Można tu znaleźć instytucje naukowe znaczące nie tylko w skali Polski (m.in. Uniwersytet Jagielloński, Politechnika Krakowska, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, IFJ PAN), ale nawet świata (Massachusetts Institute of Technology). Jednocześnie nie brakuje podmiotów edukacyjnych, od warszawskiego Centrum Nauki Kopernik po szkoły podstawowe. Całość jest wspierana przez rosnącą rzeszę amatorów, używających do rejestrowania cząstek promieniowania kosmicznego własnych smartfonów.
Poszerzanie granic ludzkiego poznania zawsze było, jest i zawsze będzie procesem trudnym, ze wzrostem złożoności i subtelności badanych zjawisk wymagającym coraz większych nakładów finansowych, czasowych i ludzkich. Dlatego tak ważne jest umiejętne wykorzystywanie wszystkich możliwości tkwiących w już istniejącym sprzęcie oraz zaangażowanie w realizację projektów naukowych jak największej liczby osób, nie tylko naukowców, ale i pasjonatów. Jesteśmy dumni, że projekt CREDO, którego idea narodziła się w naszym instytucie, stara się te idee realizować zarówno w skali kraju, jak i świata, mówi prof. dr hab. Marek Jeżabek, dyrektor IFJ PAN.
Koordynator projektu, dr hab. Piotr Homola, prof. IFJ PAN, tak wyjaśnia jego istotę: Tym, co decyduje o unikatowości CREDO, jest łączenie danych pochodzących z bardzo wielu różnych detektorów rejestrujących cząstki związane z promieniowaniem kosmicznym. Mowa tu zarówno o detektorach w pełni profesjonalnych, budowanych i zarządzanych przez duże ośrodki lub konsorcja naukowe i nierzadko kosztujących krocie, jak i tych tanich, mniej wyrafinowanych, za to znacznie powszechniejszych, jak matryce CMOS w aparatach fotograficznych smartfonów.
Detektory smartfonów mają małe rozmiary, rzędu ułamków centymetra kwadratowego. To dlatego urządzenia te, nawet w dużej liczbie, słabo nadają się do badania zjawisk lokalnych, takich jak np. docierające do powierzchni Ziemi wielkie pęki atmosferyczne (czyli kaskady cząstek wtórnych zainicjowane przez wysokoenergetyczne promieniowanie kosmiczne oddziałujące z ziemską atmosferą). W przypadku CREDO kluczowe znaczenie ma jednak fakt, że smartfony znajdują się w wielu miejscach globu. Tak duże rozproszenie powoduje, że w zbieranych danych można tropić korelacje czasowe między liczbami zarejestrowanych cząstek, niosące informacje o globalnych zmianach w strumieniu promieniowania kosmicznego docierającego do Ziemi.
W ramach projektu CREDO wykrywaniem zespołów promieni kosmicznych zajmuje się m.in. eksperyment Quantum Gravity Previewer, wyszukujący odchyleń w czasach rejestracji cząstek przez smartfony w różnych miejscach globu. Inspiracją jest tu jeden eksperymentów naukowych z 1983 roku, kiedy to sieć detektorów promieniowania kosmicznego nad Manitobą zaobserwowała w ciągu zaledwie pięciu minut aż 32 przypadki wielkich pęków atmosferycznych (wobec zaledwie jednego spodziewanego!). Badanie takich zjawisk, obecnie dla nauki niezrozumiałych, jest jednym z celów CREDO i mogłoby m.in. wyjaśnić, czy obserwowane fluktuacje wynikają z przedziwnych cech akceleratorów kosmicznych, czy może z efektów oddziaływania produktów rozpadów cząstek z kwantową strukturą czasoprzestrzeni.
Wpływ promieniowania kosmicznego na ludzkie zdrowie to inny temat badawczy projektu CREDO. Wprawdzie średniego natężenia wtórnego promieniowania kosmicznego nie uważa się za szkodliwe (jest ono kilkukrotnie mniejsze od natężenia naturalnej radioaktywności środowiska), jednakże do tej pory nie badano wpływu na ludzkie zdrowie wielkich pęków atmosferycznych, tj. kaskad cząstek wtórnych inicjowanych przez promienie kosmiczne o bardzo dużych energiach. W projekcie CREDO będą prowadzone takie właśnie, pionierskie badania, wykraczające poza dotychczasowe ramy zarówno w zakresie fizyki samego promieniowania kosmicznego, jak i wiedzy o możliwej odpowiedzi biologicznej ludzkiego organizmu na to promieniowanie. Badania te będą prowadzone z uwzględnieniem światowych trendów w poznawaniu wpływu niskich dawek promieniowania na organizmy żywe pod kątem możliwości wystąpienia zarówno zjawisk pozytywnych (np. zwiększania odporności organizmów), jak i negatywnych (np. choroby o nieznanej etiologii, w tym niektóre typy nowotworów).
CREDO ma szansę zweryfikować także inną spektakularną hipotezę, do tej pory pomiarowo potwierdzoną tylko raz: o związkach trzęsień ziemi ze zmianami w strumieniu promieniowania kosmicznego docierającego do powierzchni naszej planety. Przypuszcza się bowiem, że naprężenia w skorupie ziemskiej mogą generować anomalne pola elektromagnetyczne nad powierzchnią, co wpływałoby na liczbę rejestrowanych cząstek promieniowania kosmicznego. Gdyby zjawisko zostało potwierdzone, zbadane i zrozumiane ilościowo, prawdopodobnie moglibyśmy się pokusić nawet o skonstruowanie systemów ostrzegających przed zbliżającym się trzęsieniem ziemi.
Aby podłączyć smartfon do chmury detektorów CREDO, wystarczy zainstalować aplikację CREDO Detector i uruchamiać ją przy zasłoniętym obiektywie kamery (szczegóły na stronie https://credo.science/). Nadzór nad utrzymaniem i rozbudową aplikacji CREDO Detector sprawuje Politechnika Krakowska, za gromadzenie i przetwarzanie danych napływających z całego świata (nie tylko ze smartfonów) odpowiada Akademickie Centrum Komputerowe CYFRONET Akademii Górniczo-Hutniczej w Krakowie.
CREDO to obserwatorium podwójnie otwarte. Każdy może dołączyć ze swoimi danymi, każdy też może otrzymać dostęp do wszystkich danych naukowych (oczywiście z pełnym poszanowaniem prywatności użytkowników). Dotyczy to także realizacji przedsięwzięć naukowych, których jeszcze nie uwzględniono w formalnym programie badawczym projektu.
Inicjatorzy CREDO dokładają starań, by docenić wszystkie podmioty zaangażowane w projekt, w tym również osoby spoza formalnego świata nauki. Współtwórcy CREDO mają prawo do współautorstwa publikacji naukowych opracowanych na podstawie zebranych danych. Z kolei na stronie internetowej projektu można na bieżąco śledzić wykresy powstające w ramach aktualnie prowadzonych eksperymentów. Każdy użytkownik może tu sprawdzić wkład swoich danych, może też włączyć się we wszystkie analizy.
Uważamy, że projekty naukowe powinny umożliwiać nie tylko zbieranie danych, edukację czy rozwój indywidualny, ale także powinny dawać może nie w pełni naukową, za to jakże satysfakcjonującą przyjemność poznawczą, zaznacza prof. Homola. W tym duchu wymyśliliśmy nieustający konkurs 'Łowcy Cząstek', skierowany głównie do uczniów i studentów i umożliwiający indywidualną i drużynową rywalizację właścicieli smartfonów. Aktualnie w konkursie uczestniczy ponad 1200 uczniów z około 60 szkół. Na razie są to szkoły polskie, liczymy jednak, że z czasem konkurs rozszerzy się na inne kraje.
Smartfony to tylko jeden rodzaj detektorów rejestrujących cząstki promieniowania kosmicznego w ramach CREDO. Już niedługo swoje dane będą przekazywać m.in. sieci małych i niedrogich detektorów typu Cosmic Watch. Sieci tego typu mogą być konstruowane nawet przez niezbyt zaawansowanych elektronicznie amatorów, wzorujących się np. na otwartym projekcie pierwotnie opracowanym przez MIT dla słynnego detektora neutrinowego IceCube.
Otwartość CREDO umożliwia praktycznie natychmiastowe włączenie się do projektu również profesjonalistom, pozwalając im analizować dane, które dla innych są tylko niepotrzebnym czy wręcz niechcianym tłem. Mowa tu o mionach pochodzenia kosmicznego, rejestrowanych przez profesjonalne obserwatoria promieniowania kosmicznego najwyższych energii, detektory neutrin i ciemnej materii, obserwatoria astronomiczne wyposażone w teleskopy z matrycami CMOS, a także ośrodki akceleratorowe z ich specjalistycznymi detektorami cząstek elementarnych.
Prawdziwa siła CREDO tkwi w jego fizycznej wielokulturowości. Staramy się łączyć dane dotyczące różnych typów promieniowania, o różnych energiach, rejestrowane różnymi metodami. Mamy nadzieję, że otworzymy w ten sposób nowe okno na Wszechświat i lepiej zrozumiemy fundamentalne cechy naszej rzeczywistości, podsumowuje prof. Homola.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Grupa europejskich naukowców zaobserwowała ruch elektronów w molekułach. To niezwykle istotne osiągnięcie, które ułatwi obserwowanie i rozumienie reakcji chemicznych. Uczeni, pracujący pod kierunkiem profesora Marca Vrakkinga z Instytutu Maksa Borna, wykorzystali attosekundowe impulsy lasera. Dopiero to pozwoliło na przeprowadzenie niedostępnych wcześniej obserwacji. Attosekunda to 10-18 sekundy. W tym czasie światło zdąży przebyć odległość zaledwie jednej milionowej milimetra, czyli tyle, ile mierzy sobie średnica wielu molekuł. Dzięki attosekundowym impulsom światła możliwe było wykonanie "zdjęć" elektronów w molekułach.
Uczeni badali molekułę wodoru, składającą się z dwóch protonów i dwóch elektronów. Laser został wykorzytany do sprawdzenia, w jaki sposób w molekule zachodzi jonizacja. Podczas tego procesu jeden elektron jest usuwany z molekuły i zmienia się stan energetyczny drugiego.
Najpierw potraktowaliśmy molekułę wodoru attosekundowym impulsem lasera. To doprowadziło do usunięcia elektronu - molekuła została zjonizowana. Ponadto podzieliliśmy molekułę na dwie części za pomocą lasera podczerwonego. W ten sposób mogliśmy zbadać, jak ładunek rozkłada się pomiędzy dwoma fragmentami. Jako, że jednego elektronu brakowało, jedna z części była naładowana dodatnio, a druga była obojętna. Wiedzieliśmy, że brakujący elektron jest w części obojętnej - mówi profesor Vrakking.
Od dziesiątków lat naukowcy próbowali przeprowadzić podobne obserwacje. Używano do tego celu jednak lasera femtosekundowego, którego impuls trwa 1000-krotnie dłużej niż w przypadku lasera attosekundowego. Przy tej skali można było obserwować ruch atomów i molekuł, ale nie elektronów.
-
przez KopalniaWiedzy.pl
Zwykle podczas tłumaczenia, dlaczego nie da się zobaczyć obiektów świata atomowego, słuchaczom przedstawiana jest zasada nieoznaczoności Heisenberga oraz porównywane są rozmiary niewielkich przedmiotów (włos, ziarno piasku), z długością fali światła, a następnie atomami i elektronami. I wszystko byłoby pięknie objaśnione, gdyby nie powstał film, na którym widać poruszający się elektron. Udostępnione niedawno nagranie pokazuje wspomnianą cząstkę w chwili uderzania w atom. Długość zapisu odpowiada przejściu pojedynczej fali światła. W kadrze widać rozkład energii elektronu. Dotychczas podejmowane próby wykonania takiego filmu dawały zbyt rozmyty obraz – ogromna prędkość "głównego bohatera" uniemożliwiała uzyskanie nieporuszonych zdjęć. Naukowcy ze szwedzkiego Lund University poszli zatem w ślady fotografów i użyli "lampy błyskowej". Za pomocą jednego lasera wyrwali elektron z orbity, aby wywołać filmowane zdarzenie. W roli flesza wykorzystali natomiast laser wytwarzający attosekundowe impulsy światła. Do niedawna fizycy i chemicy mogli o podobnym urządzeniu jedynie pomarzyć. Ponieważ dotychczas uzyskiwane impulsy attosekudowe były zbyt słabe, aby mogły dać wyraźny obraz, szczytem możliwości były eksperymenty z udziałem tysiąckrotnie wolniejszych laserów femtosekudowych (1 fs = 10-15 s, 1 as = 10-18 s, okrążenie jądra atomu przez elektron to około 150 as). Rozwiązaniem problemu okazało się wielokrotne oświetlanie tego samego momentu cyklicznie powtarzanej "sceny", niemal identycznie jak w zdjęciach stroboskopowych. Fizycy mają zamiar wykorzystać stworzoną przez siebie technikę w kolejnych eksperymentach. Uzyskane dzięki niej obrazy pozwolą potwierdzić teorie naukowe przez niemal bezpośrednią obserwację. Ponadto zdjęcia ukażą zachowanie reszty atomu w chwili pozbawiania go elektronu, np. sposobu wypełniania powstałej luki przez inne elektrony. Aby lepiej zrozumieć osiągnięcie Szwedów, warto powtórzyć za jednym z szefów zespołu badawczego, Johanem Mauritssonem: jedna attosekunda tak ma się tak do sekundy, jak sekunda do wieku Wszechświata.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.