Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Przy opisywaniu dziedziczenia przyjęło się traktować ten proces wyłącznie jako zależny od informacji zapisanej w DNA. Okazuje się jednak, że oprócz tego mechanizmu istnieje także druga grupa zjawisk, które kontrolują aktywność genów przekazywanych potomstwu. Jeden z mechanizmów decydujących o pozagenowym (lub, mówiąc fachowym językiem, epigenetycznym) dziedziczeniu został niedawno odkryty przez amerykańskich naukowców.

Badacze z laboratorium Cold Springs Harbor rozszerzyli dostępną dotychczas wiedzę na temat sposobu, w jaki sposób upakowanie nici DNA w jądrze komórkowym wpływa na rozwój komórek potomnych. Nić ta jest nawinięta na białka zwane histonami, wraz z którymi tworzy strukturę zwaną chromatyną, przypominającą sznur z nawleczonymi koralami. Im silniej histony wiążą w danym miejscu z DNA, tym mniej aktywne są położone w tym miejscu nici geny. Takie "ciche" obszary genomu komórki nazywamy heterochromatyną. Tworzy ona około 10% całego genomu człowieka i "rozluźnia" swoją strukturę wyłącznie w czasie kopiowania DNA na potrzeby podziału komórkowego.

Podczas replikacji materiału genetycznego dochodzi do powielenia nie tylko samej jego sekwencji, lecz także miejsc, w których powstaje heterochromatyna. Oznacza to, że nawet bliźnięta o identycznej informacji genetycznej mogą wykazywać inną ekspresję genów z powodu zjawisk epigenetycznych. Dotychczas nie było jasne, w jaki sposób dochodzi do "zapamiętywania" przez potomne komórki sposobu, w który histony łączą się z określonymi odcinkami DNA.

Jako model do badań posłużyły drożdże piekarskie, bardzo często stosowane w tego typu eksperymentach. Odkryto, że za zjawiskiem stoi mechanizm tzw. interferencji RNA (za jego odkrycie przyznano w 2006 Nagrodę Nobla). Polega on na bardzo precyzyjnym wyłączaniu aktywności określonych genów za pomocą krótkich nici RNA. Okazało się, że do syntezy RNA odpowiedzialnego za interferencję dochodzi wyłącznie podczas podziału komórek, kiedy to cała nić DNA (a więc także heterochromatyna) na krótki okres rozluźnia się i staje się aktywna. Właśnie przez ten krótki czas dochodzi do syntezy RNA, które następnie reguluje proces powstawania struktury chromatyny.

Badacze zauważyli jednocześnie, że bardzo podobny proces zachodzi u niektórych roślin. Odkryto bowiem, że pod wpływem zmiany temperatury dochodzi do zmiany nasilenia zjawiska interferencji RNA. Roślina musi przejść przez okres chłodu, by z nasiona zaczął powstawać zalążek nowego pędu (właśnie w tym czasie dochodzi do zmian w ekspresji genów pod wpływem zmiany temperatury). Proces ten widać doskonale w przypadku niektórych zbóż, zwanych ozimymi.

Artykuł na temat szczegółów odkrycia został opublikowany w najnowszym numerze czasopisma Current Biology.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Jedno z ważnych pytań o początki życia brzmi: w jaki sposób cząstki RNA swobodnie przemieszczające się w pierwotnej zupie zostały opakowane w chronione błoną komórki. Odpowiedź na to pytanie zaproponowali właśnie na łamach Science Advances inżynierowie i chemicy z Uniwersytetów w Chicago i w Houston oraz Jack Szostak, laureat Nagrody Nobla w dziedzinie fizjologii lub medycyny. W swoim artykule pokazują, jak przed 3,8 miliardami lat krople deszczu mogły ochronić pierwsze protokomórki i umożliwić powstanie złożonych organizmów żywych.
      Uczeni przyjrzeli się koacerwatom, dużym grupom cząstek, samoistnie tworzącym się w układach koloidalnych (niejednorodnych mieszaninach). Zachowanie koacerwatów można porównać do zachowania kropli oleju w wodzie.
      Już dawno pojawiła się hipoteza, że nie posiadające błon mikrokrople koacerwatów mogły być modelowymi protokomórkami, gdyż mogą rosnąć, dzielić się i gromadzić wewnątrz RNA. Jednak błyskawiczna wymiana RNA pomiędzy koacerwatami, ich szybkie łączenie się, zachodzące w ciągu minut oznaczają, że poszczególne krople nie są w stanie utrzymać swojej odrębności genetycznej. To zaś oznacza, że ewolucja darwinowska nie jest możliwa, a populacja takich protokomórek byłaby narażona na błyskawiczne załamanie w wyniku rozprzestrzeniania się pasożytniczego RNA, czytamy w artykule. Innymi słowy każda kropla, która zawierałaby mutację potencjalnie użyteczną na drodze do powstania życia, błyskawicznie wymieniałaby swoje RNA z innymi RNA, nie posiadającymi takich pożytecznych mutacji. W bardzo szybkim tempie wszystkie krople stałyby się takie same. Nie byłoby różnicowania, konkurencji, a zatem nie byłoby ewolucji i nie mogłoby powstać życie.
      Jeśli dochodzi do ciągłej wymiany molekuł czy to między kroplami czy między komórkami i po krótkim czasie wszystkie one wyglądają tak samo, to nie pojawi się ewolucja. Będziemy mieli grupę klonów, wyjaśnia Aman Agrawal z Pritzker School of Molecular Engineering na University of Chicago.
      Nauka od dawna zastanawia się, co było pierwszą molekułą biologiczną. To problem kury i jajka. DNA koduje informacje, ale nie przeprowadza żadnych działań. Białka przeprowadzają działania, ale nie przenoszą informacji. Badacze tacy jak Szostak wysunęli hipotezę, że pierwsze było RNA. To molekuła jak DNA, zdolna do kodowania informacji, ale zawija się jak białko.
      RNA było więc kandydatem na pierwszy materiał biologiczny, a koacerwaty kandydatami na pierwsze protokomórki. Wszystko wydawało się dobrze układać, aż w 2014 roku Szostak opublikował artykuł, w którym informował, że wymiana materiału pomiędzy kroplami koacerwatów zachodzi zbyt szybko. Możesz stworzyć różnego rodzaju krople koacerwatów, ale nie zachowają one swojej unikatowej odrębności. Zbyt szybko będą wymieniały RNA. To był problem z którym przez długi czas nie potrafiono sobie poradzić, mówi Szostak.
      W naszym ostatnim artykule wykazaliśmy, że problem ten można przynajmniej częściowo przezwyciężyć, jeśli koacerwaty zamkniemy w wodzie destylowanej – na przykład wodzie deszczowej czy jakiejś innej słodkiej wodzie. W kroplach takich pojawia się rodzaj wytrzymałej błony, która ogranicza wymianę zawartości, dodaje uczony.
      Na trop tego zjawiska naukowcy wpadli, gdy Aman Agrawal był na studiach doktoranckich. Badał zachowanie koacerwatów poddanych działaniu pola elektrycznego w destylowanej wodzie. Jego badania nie miały nic wspólnego z początkami życia. Interesował go fascynujący materiał z inżynieryjnego punktu widzenia. Manipulował napięciem powierzchniowym, wymianą soli, molekuł itp. Chciał w swojej pracy doktorskiej badać podstawowe właściwości koacerwatów.
      Pewnego dnia Agrawal jadł obiad z promotorem swojej pracy magisterskiej, profesorem Alamgirem Karimem oraz jego starym znajomym, jednym ze światowych ekspertów inżynierii molekularnej, Matthew Tirrellem. Tirrell zaczął się zastanawiać, jak badania Agrawala nad wpływem wody destylowanej na koacerwaty mogą się mieć do początków życia na Ziemi. Zadał swoim rozmówcom pytanie, czy 3,8 miliarda lat temu na naszej planecie mogła istnieć woda destylowana. Spontanicznie odpowiedziałem „deszczówka”! Oczy mu się zaświeciły i od razu było widać, że jest podekscytowany tym pomysłem. Tak połączyły się nasze pomysły, wspomina profesor Karim.
      Tirrell skontaktował Agrawla z Szostakiem, który niedawno rozpoczął na Uniwersytecie Chicagowskim nowy projekt badawczy, nazwany z czasem Origins of Life Initiative. Profesor Tirrel zadał Szostakowi pytanie: Jak sądzisz, skąd na Ziemi przed powstaniem życia mogła wziąć się woda destylowana. I Jack odpowiedział dokładnie to, co już usłyszałem. Że z deszczu.
      Szostak dostarczył Agrawalowi próbki DNA do badań, a ten odkrył, że dzięki wodzie destylowanej transfer RNA pomiędzy kroplami koacerwatów znacząco się wydłużył, z minut do dni. To wystarczająco długo, że mogło dochodzić do mutacji, konkurencji i ewolucji. Gdy mamy populację niestabilnych protokomórek, będą wymieniały materiał genetyczny i staną się klonami. Nie ma tutaj miejsca na ewolucję w rozumieniu Darwina. Jeśli jednak ustabilizujemy te protokomórki tak, by przechowywały swoją unikatową informację wystarczająco długo, co najmniej przez kilka dni, może dojść do mutacji i cała populacja będzie ewoluowała, stwierdza Agrawal.
      Początkowo Agrawal prowadził swoje badania z komercyjnie dostępną laboratoryjną wodą destylowaną. Jest ona wolna od zanieczyszczeń, ma neutralne pH. Jest bardzo odległa od tego, co występuje w naturze. Dlatego recenzenci pisma naukowego, do którego miał trafić artykuł, zapytali Agrawala, co się stanie, jeśli woda będzie miała odczyn kwasowy, będzie bardziej podobna do tego, co w naturze.
      Naukowcy zebrali więc w Houston deszczówkę i zaczęli z nią eksperymentować. Gdy porównali wyniki badań z wykorzystaniem naturalnej deszczówki oraz wody destylowanej laboratoryjnie, okazało się, że są one identyczne. W obu rodzajach wody panowały warunki, które pozwalałyby na ewolucję RNA wewnątrz koacerwatów.
      Oczywiście skład chemiczny deszczu, który pada obecnie w Houston, jest inny, niż deszczu, który padał na Ziemi przed 3,8 miliardami lat. To samo zresztą można powiedzieć o modelowych protokomórkach. Autorzy badań dowiedli jedynie, że taki scenariusz rozwoju życia jest możliwy, ale nie, że miał miejsce.
      Molekuły, których użyliśmy do stworzenia naszych protokomórek to tylko modele do czasu, aż znajdziemy bardziej odpowiednie molekuły. Środowisko chemiczne mogło się nieco różnić, ale zjawiska fizyczne były takie same, mówi Agrawal.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komórki z kolana osoby z chorobą zwyrodnieniową stawów (łac. osteoarthritis, OA) mają anormalnie skrócone telomery, czyli ochronne sekwencje z nukleotydów, które zabezpieczają przed "przycinaniem" chromosomów po ich podwojeniu w czasie podziału komórki. Im bliżej uszkodzonego rejonu wewnątrz stawu, tym wyższy odsetek komórek z bardzo krótkimi telomerami.
      Normalnie telomery ulegają skróceniu podczas każdego kolejnego podziału (lepiej, by utracie podlegały właśnie one niż znacznie cenniejsze sekwencje, czyli geny), jednak zmniejszenie długości bywa także wynikiem nagłego uszkodzenia komórki, np. przez stres oksydacyjny.
      Ponieważ wyniki wcześniejszych badań hodowli komórkowych wskazywały, że w chorobie zwyrodnieniowej stawów spada średnia długość telomerów, duński zespół posłużył się nową metodą macierzy długości pojedynczego telomeru (ang. Universal single telomere length assay), by zbadać komórki pobrane z kolan pacjentów, którzy przeszli operację wszczepienia endoprotezy.
      Zauważyliśmy zarówno zmniejszoną długość telomerów, jak i związany z natężeniem OA, bliskością najbardziej uszkodzonego fragmentu stawu oraz starością wzrost liczby komórek z ultrakrótkimi telomerami. [...] Stara chrząstka w obrębie stawów nie jest w stanie prawidłowo się naprawić. Sprawa z telomerami pokazuje nam, że w OA zachodzą równolegle dwa procesy. Zwykłe związane z wiekiem skrócenie telomerów, które odpowiada za niezdolność komórek do podziałów i starość oraz ultraskrócenie telomerów, najprawdopodobniej wywołane naprężeniem uciskającym podczas użytkowania, które z kolei prowadzi do [...] wyeliminowania zdolności samoregeneracji stawu. Sądzimy, że drugie z wymienionych zjawisk jest najważniejsze w przebiegu OA. Uszkodzona chrząstka może potem zwiększać stres mechaniczny i krąg się zamyka - wyjaśnia Maria Harbo.
    • przez KopalniaWiedzy.pl
      Drapieżniki wybierają ofiary, by zrównoważyć dietę i zwiększyć swoje szanse na spłodzenie/wydanie na świat zdrowego potomstwa. Międzynarodowy zespół naukowców po raz pierwszy wykazał, że dla polujących ważniejsza bywa wartość odżywcza ofiary niż jej kaloryczność (Proceedings of the Royal Society B).
      Biolodzy obserwowali poczynania biegaczowatych Anchomenus dorsalis. Gatunek obejmuje swym zasięgiem prawie całą Europę i żywi się ślimakami nagimi, mszycami, ćmami, larwami chrząszczy i mrówkami.
      Akademicy zebrali samice A. dorsalis i podzielili je na 2 grupy. Jedna mogła wybierać między kąskami wysokobiałkowymi a wysokotłuszczowymi. Druga nie miała już tyle szczęścia: część karmiono wyłącznie produktami obfitującymi w proteiny, a część tylko bogatymi w tłuszcz. W ich przypadku trudno więc było mówić o zbalansowanej diecie.
      Grupa z wolnością wyboru jadła wszystkiego po trochu, ponieważ równowaga białek i tłuszczów zapewnia optymalne warunki do wytworzenia zdrowych jaj. Mając dostęp do protein i tłuszczów, biegacze produkowały więcej jaj.
      Wcześniejsze badania pokazały, że owady roślinożerne, takie jak gąsienice motyli i koniki polne, oraz wszystkożerne, np. muszki owocowe i świerszcze, starannie dobierają pokarmy, by zbalansować dietę, jednak w odniesieniu do drapieżników zakładano, że ważniejsza jest ogólna kaloryczność niż skład/wartość odżywcza. Chociaż w ramach najnowszego studium Brytyjczycy, Australijczycy, Duńczycy i Nowozelandczycy skupili się tylko na drapieżnym owadzie, uważają, że zasada równoważenia diety obowiązuje wszystkie drapieżniki.
    • przez KopalniaWiedzy.pl
      Czy bakterie się starzeją? Kiedyś uważano, że nie, a przynajmniej nie w takim sensie jak inne organizmy, ponieważ dzieląc się na komórki potomne, tworzą klony i wiecznie młodą populację. Okazuje się jednak, że to nieprawda i przekazując jednej z córek więcej uszkodzeń, a drugiej mniej, bakterie manipulują sprawnością ewolucyjną całej populacji (Current Biology).
      Starzenie organizmu jest często powodowane przez akumulację niegenetycznych uszkodzeń, np. utlenionych białek. Która z dwóch alternatyw jest lepsza dla jednokomórkowego organizmu, u którego pojawiło się nienaprawialne uszkodzenie: podzielić uszkodzenia komórkowe po równo między komórki potomne czy przydzielić jednej z nich całość uszkodzeń? - pyta prof. Lin Chao z Uniwersytetu Kalifornijskiego w San Diego.
      Okazuje się, że bakterie wybrały drugą opcję. Wydają się przekazywać jednej z córek więcej uszkodzeń (to bakteria postarzona), a drugiej mniej (biolodzy nazywają to odmłodzeniem). Chao oraz Camilla Rang i Annie Peng doszli do takiego wniosku dzięki analizie komputerowej dwóch eksperymentalnych studiów z 2005 i 2010 r. Wtedy nie udało się rozstrzygnąć, czy bakterie starzeją się, czy nie, bo studium sprzed 5 lat wskazywało, że tak, a to z 2010 r., w którym wykorzystano bardziej zaawansowaną aparaturę i zebrano więcej danych, sugerowało, że nie.
      W ramach naszych modeli komputerowych przeanalizowaliśmy dane z obu publikacji i odkryliśmy, że w rzeczywistości pokazują tę samą rzecz. W populacji bakteryjnej starzenie i odmładzanie zachodzą jednocześnie, więc przez sposób, w jaki to mierzysz, możesz zacząć wierzyć, że nie ma starzenia.
      W oddzielnym badaniu naukowcy z San Diego sfilmowali pałeczki okrężnicy, które dzieliły się przez kilkaset pokoleń. Potwierdzili, że Escherichia coli dzielą się za każdym razem na komórki potomne wydłużające się w różnym tempie. Sugeruje to, że jedna z córek odziedziczyła niemal wszystkie uszkodzenia komórkowe, a druga niewiele bądź wcale.
      Modele komputerowe pokazały, że przekazanie jednej z komórek potomnych większej części uszkodzeń jest korzystne z perspektywy ewolucyjnej. Spostrzeżenie, że komórki potomne E. coli nie osiągają tej samej długości, sprawiło, że biolodzy uznali, że bakterie nie dzielą się na tak symetryczne części, jak wcześniej sądzono. W bakteryjnej komórce musi [zatem] istnieć jakiś mechanizm aktywnego transportu, który przenosi niegenetyczne uszkodzenia do jednej z komórek potomnych - podsumowuje Chao.
    • przez KopalniaWiedzy.pl
      W społeczeństwach patriarchalnych kobiety wypadają gorzej od mężczyzn w zadaniach wymagających obracania obiektów w myślach. W społecznościach matriarchalnych różnice w osiąganych wynikach zanikają.
      Różnice w zdolnościach przestrzennych ujawniają się w rozmaitych kulturach, dotąd jednak niewiele uwagi poświęcano zagadnieniu, do jakiego stopnia zjawisko to jest uwarunkowane biologicznie, a do jakiego kulturowo. Gdyby się okazało, że kultura odpowiada za gorsze wyniki pań w zadaniach wymagających wyobraźni przestrzennej, uprawdopodobniłyby się twierdzenia wszystkich osób, które twierdzą, że niedobór kobiet o znaczących osiągnięciach w sektorze SET (od ang. science, engineering, technology) to wynik stereotypów i dyskryminacji.
      By się przekonać, jak jest naprawdę, dr Moshe Hoffman z Uniwersytetu Kalifornijskiego w San Diego pojechał do północnych Indii i odwiedził dwa plemiona: patriarchalnych Karbi, gdzie większość dóbr należy do mężczyzn i dziedziczy najstarszy syn oraz Khasi, gdzie w odróżnieniu od większości wspólnot indyjskich zachowało się dziedziczenie matrylinearne, a status kobiet jest wysoki (po ślubie to mąż przenosi się do żony, domem rządzi babcia, czyli teściowa, a mężczyznom nie wolno mieć ziemi). Hoffman tłumaczy, że wybrał właśnie te społeczności, ponieważ biologicznie i geograficznie są do siebie bardzo podobne, różnice występujące w zdolnościach należałoby zatem przypisać odmiennemu porządkowi społecznemu. Wioski tych grup etnicznych się ze sobą mieszają, w dodatku genetycznie oddzieliły się one od siebie zaledwie kilkaset lat temu.
      Amerykanin odwiedził 8 wiosek. Zebrał grupę 1279 osób, które miały na czas ułożyć 4-elementową układankę przedstawiającą konia. Wszystkim ochotnikom zapłacono dniówkę za samo zjawienie się na badaniu. Za ukończenie zadania w czasie poniżej 30 s można było dostać dodatkowe wynagrodzenie. Hoffman opowiada, że czasem zgłaszały się całe wioski. Normalnie ludzie ci pracują w pocie czoła w polu, więc perspektywa zarobienia tej samej kwoty w dużo lżejszy sposób była dla nich wyjątkowo pociągająca.
      Gdy wyliczono średni czas, biorąc pod uwagę wszystkich badanych (1279), wyniósł on 40 sekund. Okazało się jednak, że wśród Karbi mężczyźni kończyli układanie o 36% wcześniej niż kobiety, a wśród Khasi obie płcie wypadały bardzo podobnie.
      Eksperymenty nie ujawniły, jak kultura wpływa na zdolności przestrzenne, ale najprawdopodobniej za pośrednictwem struktury rodzinnej i wykształcenia. W grupie z dziedziczeniem patrylinearnym mężczyźni uczą się o ok. 3,5 roku dłużej od kobiet, a w społeczeństwie matriarchalnym obie płcie kształcą się tyle samo czasu. Gdy naukowcy kontrolowali liczbę lat uczęszczania do szkoły, różnica między płciami zmniejszyła się o 1/3. Wg Hoffmana, oznacza to, że nauka może zwiększać zdolności przestrzenne.
      W ludzie Karbi niektóre kobiety mają ziemię i pieniądze, ponieważ w ich rodzinach nie było synów. Amerykanin porównał je z rodzinami, w których dominowali mężczyźni. Znowu okazało się, że przy wzroście stanu posiadania kobiety różnica w zdolnościach przestrzennych zmniejsza się o 1/3. Nie da się wykluczyć, że kobiety bardziej uzdolnione przestrzennie więcej osiągają, ale może być też tak, że domy z mniejszymi różnicami w uprawnieniach płci wzmacniają u kobiet zdolności przestrzenne.
      Warto przypomnieć, że gdy przed 2 laty Janet Hyde i Janet Mertz University of Wisconsin-Madison przeanalizowały szereg badań, wykazały, że w społeczeństwach z silniej zaznaczoną nierównością płci dziewczynki osiągają gorsze wyniki w matematyce.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...