Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Niekontrowersyjne komórki macierzyste?

Rekomendowane odpowiedzi

Dzięki najnowszym osiągnięciom amerykańskich naukowców prawdopodobnie ze sporów o wykorzystywanie komórek macierzystych znikną argumenty etyczne. Uczonym z Massachusetts udało się uzyskać komórki macierzyste bez czynienia szkody embrionowi.

Doktor Rober Lanza szef zespołu naukowego w Advanced Cell Technology powiedział, że możliwe jest pozyskanie komórek macierzystych bez niszczenia embrionu i bez naruszania jego potencjału życiowego.

W ubiegłym miesiącu prezydent Bush zawetował projekt ustawy, która przewidywała zwiększenie funduszy federalnych na badania nad komórkami macierzystymi i wykorzystanie do badań kolejnych ich linii. Prezydent powoływał się właśnie na wątpliwości natury moralnej.
Lanza powiedział, że badania jego zespołu powodują, że obiekcje prezydenta stały się bezpodstawne.

Komórki macierzyste to taki rodzaj komórek, które potrafią przeobrazić się w inne komórki ludzkiego ciała. Największy potencjał do przeobrażenia się mają komórki pobrane z embrionów w pierwszych dniach ich rozwoju. Naukowcy mają nadzieję, że dzięki tego typu komórkom uda się zwalczyć wiele chorób, jak rak, cukrzyca czy choroba Parkinsona.

Uczeni z Massachusetts do uzyskania komórek macierzystych wykorzystali znane technologie. Zespół Lanzy wyhodował embriony składające się z 8-10 komórek. Na tym etapie często pobiera się jedną komórkę do zbadania pod kątem chorób genetycznych.. Amerykanie pobrali ją, by uzyskać kolejne komórki macierzyste. Embrion bez 1 komórki jest w stanie normalnie się później rozwijać, czego dowodem jest fakt, iż co roku na świat przychodzi 1500 dzieci, które powstały właśnie z takich embrionów.

Zespołowi Lanzy udało się uzyskać w ten sposób dwie nowe linie komórek macierzystych, z których rozwinęło się 19 różnych rodzajów komórek.
Doktor Ronald M. Green, profesor etyki na Dartmouth University nie jest pewien, czy najnowsze osiągnięcia doprowadzą do tego, że przeciwnicy badań nad komórkami macierzystymi wyrażą na nie zgodę. Z kolei Katy Hudson, dyrektor w The Genetics and Public Policy Center na Uniwersytecie Johnsa Hopkinsa zauważa, że nie wiemy, czy dzieci urodzone z embrionów, z których pobrano komórkę, będą w przyszłości rozwijały się prawidłowo.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Zespół profesora Jakoba Hanny z Instytutu Weizmanna stworzył z komórek macierzystych kompletne modele ludzkich embrionów i prowadził ich rozwój poza macicą przez 8 dni. Embriony posiadały wszystkie struktury charakterystyczne dla naturalnie powstałych 14-dniowych embrionów, w tym łożysko, pęcherzyk żółtkowy, kosmówkę i inne tkanki potrzebne do odpowiedniego wzrostu. To znaczące osiągnięcie, gdyż to, co udawało się dotychczas uzyskać z ludzkich komórek macierzystych nie mogło być uznawane za prawdziwe modeli embrionów, gdyż nie posiadało niemal żadnych struktur niezbędnych do rozwoju embrionalnego.
      Modele embrionu uzyskane przez zespół Hanny posłużą nie tylko do badań nad słabo poznanym najwcześniejszym etapem rozwoju człowieka. A to ten etap jest w wielu momentach kluczowy. W siódmym dniu po zapłodnieniu rozwijający się zarodek zagnieżdża się w macicy, a już 3-4 tygodnie później wykształcają się zawiązki wszystkich narządów. Wszystko rozgrywa się w pierwszym miesiącu, przez pozostałych osiem miesięcy płód głównie rośnie, mówi Hanna. Jednak ten pierwszy miesiąc to dla nas w dużej mierze tajemnica. Nasze embriony stworzone z komórek macierzystych pozwolą na badanie tego okresu w sposób łatwy i etyczny. Rozwój modelowego embrionu bardzo przypomina rozwój prawdziwego ludzkiego embrionu, szczególnie rozwój różnych jest struktur, dodaje uczony.
      Zespół Hanny korzystał z doświadczeń zdobytych podczas prac na mysim embrionem w komórek macierzystych. W przypadku ludzkiego embrionu naukowcy również nie skorzystali ani z zapłodnionego jaja, ani z macicy. Użyli pluripotencjalnych komórek macierzystych, które mogą różnicować się w wiele – ale nie wszystkie – typów komórek. Część z wykorzystanych komórek pobrali ze skóry dorosłego człowieka, część pochodzi zaś z linii komórkowych od lat hodowanych w laboratorium.
      Następnie wykorzystali opracowaną przez siebie metodę reprogramowania zmieniając je w komórki na wcześniejszym etapie życia, które mogą różnicować się w dowolny typ komórek. Ten etap odpowiada 7-dniowemu zarodkowi, takiemu, który właśnie zagnieżdża się w macicy.
      Naukowcy podzielili pozyskane przez siebie komórki na trzy grupy. Ta, która miała rozwinąć się w embrion pozostała bez zmian. Pozostałe dwie grupy poddano działaniu odpowiednich środków chemicznych – bez modyfikacji genetycznych – po to, by rozwinęły się tkanki potrzebne do utrzymania embrionu przy życiu – łożysko, pęcherzyk żółtkowy i kosmówkę. Po wymieszaniu komórek w odpowiednim zoptymalizowanym środowisku, doszło do spontanicznej samoorganizacji i około 1% z nich utworzył embrion. Embrion z definicji sam się rozwija. Nie trzeba mu mówić, co ma robić. Wystarczy uwolnić zakodowany wewnątrz potencjał. Kluczowym elementem jest wymieszanie odpowiednich komórek na samym początku. Gdy się to zrobi, embrion samodzielnie zaczyna się rozwijać, mówi Hanna. Po uzyskaniu embrionu naukowcy przez 8 dni rozwijali go poza macicą, uzyskując etap rozwoju odpowiadający 14-dniowemu zarodkowi.
      Gdy naukowcy porównali wewnętrzną organizację swojego modelu z ilustracjami i wynikami badań anatomicznych dostępnych w atlasach z lat 60., zauważyli olbrzymie podobieństwa. Ich model zawierał każdą znaną strukturę, znajdowała się ona w odpowiednim miejscu, miała prawidłowe rozmiary i kształt. Embrion wydzielał nawet odpowiednie hormony. Gdy naukowcy je pobrali i umieścili na komercyjnym teście ciążowym, uzyskali wynik dodatni.
      Wiele wad rozwojowych pojawia się w pierwszych tygodniach życia zarodka, gdy kobieta jeszcze nie wie, że jest w ciąży. Stworzony w Izraelu model pozwoli na poszukiwanie zarówno sygnałów świadczących o prawidłowym, jak i nieprawidłowym rozwoju. Już teraz naukowcy zauważyli, że jeśli do 10 dnia po zapłodnieniu embrion nie zostanie otoczony komórkami tworzącymi łożysko, jego struktury zewnętrzne, jak pęcherzyk żółtkowy, nie rozwijają się prawidłowo.
      Naukowcy poinformowali też, że na etapie odpowiadającym 7. dniu po zapłodnieniu model składał się ze 120 komórek, a jego średnica wynosiła 0,1 mm. Na etapie 14. dnia był on złożony z około 2500 komórek i mierzył 0,5 mm.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Chin, Kanady i Wielkiej Brytanii poinformowali o znalezieniu jednego z najlepiej zachowanych embrionów dinozaurów. „Dziecko Yingliang” pozwala lepiej zbadać związki pomiędzy dinozaurami a ptakami. Embrion znajduje się w pozycji charakterystycznej dla współczesnych ptaków na krótko przed wykluciem się. Embrion zidentyfikowano jako należący do grupy owiraptorozaurów (jaszczur, złodziej jaj), terapodów blisko spokrewnionych z ptakami.
      Badający skamieniałość naukowcy zauważyli, że głowa embrionu znajduje się poniżej tułowia, kończyny są po obu jej stronach, a grzbiet jest zawinięty w kierunku szerszego końca jaja. Nigdy wcześniej nie widziano takiej pozycji u żadnego z embrionów ginozaurów. Jest ona jednak powszechna wśród współczesnych ptaków. Odkrycie oznacza, że początki takiej pozycji pojawiły się już u terapodów nie będących ptakami.
      Embrion ma około 27 centymetrów długości i znajduje się wewnątrz 17-centymetrowego jaja. Embriony dinozaurów to jedne z najrzadziej spotykanych skamieniałości. Większość z nich jest niekompletnych z przemieszczonymi kośćmi. Jesteśmy niezwykle podekscytowani znalezieniem „Dziecka Yingliang”. Jest ono świetnie zachowane i pozwoli nam poznać wiele tajemnic dotyczących rozwoju i reprodukcji dinozaurów, mówi główny autor artykułu, doktor Fion Waisum Ma z University of Birmingham. Uczony dodaje, że podobna pozycja „Dziecka Yingliang” i współczesnych ptasich embrionów sugeruje podobne zachowanie przed wykluciem się z jaja.
      „Dziecko Yingliang” liczy sobie 72–66 milionów lat. Zostało zidentyfikowane jako owiraptorozaur na podstawie czaszki. Grupa ta obejmowała upierzone terapody zamieszkujące tereny dzisiejszej Azji i Ameryki Północnej. Skamieniałość znaleziono w prefekturze Ganzhou na południu Chin w skałach z późnej kredy.
      Autorzy badań porównali pozycję embrionu owiraptorozaura z pozycjami embrionów innych terapodów oraz ptaków i na tej podstawie zaproponowali hipotezę, zgodnie z którą zachowanie embrionu przed wykluciem, w wyniku którego przyjął on taką pozycję nie jest unikatowe dla ptaków, ale pojawiło się najpierw wśród terapodów przed dziesiątkami, a może nawet setkami milionów lat.
      Interesująca jest też sama historia embrionu. Został on kupiony przez dyrektora firmy Yingliang Group, pana Lianga Liu, około roku 2000 jako przedmiot, który mógł być jajem dinozaura. Gdy po roku 2010 budowano Yingliang Stone Nature History Museum, pracownicy muzealni wybierający przedmioty na ekspozycję, zidentyfikowali go jako jajo dinozaura. Dopiero wówczas rozpoczęto badania i trafiono na sensacyjną skamieniałość.
      Ten embrion wewnątrz jaja to jedna z najpiękniejszych skamieniałości jakie kiedykolwiek widziałem. Mały dinozaur wygląda jak mały ptak przed wykluciem, zwinięty w jaju. To kolejny dowód wskazujący, że liczne cechy współczesnych ptaków pojawiły się u dinozaurów, mówi profesor Steve Brusatte z University of Edinburgh.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zespół z Uniwersytetu w Cambridge odkrył w mózgu nowy rodzaj komórek macierzystych o dużym potencjale regeneracyjnym.
      Zdolności samonaprawy mózgu nie są zbyt dobre, ale jak podkreślają naukowcy, można by to zmienić bez operacji, obierając na cel rezydujące w nim komórki macierzyste. Komórki macierzyste pozostają jednak zwykle w stanie spoczynku (ang. quiescence), co oznacza, że nie namnażają się ani nie przekształcają w różne rodzaje komórek. By więc myśleć o naprawie/regeneracji, najpierw trzeba je "obudzić".
      Podczas ostatnich badań doktorant Leo Otsuki i prof. Andrea Brand odkryli nowy rodzaj pozostających w uśpieniu komórek macierzystych - G2 (ang. G2 quiescent stem cell). G2 mają większy potencjał regeneracyjny niż wcześniej zidentyfikowane uśpione komórki macierzyste. Oprócz tego o wiele szybciej się aktywują, by produkować neurony i glej (nazwa G2 pochodzi od fazy cyklu komórkowego, na jakiej się zatrzymały).
      Badając mózg muszek owocówek, autorzy publikacji z pisma Science zidentyfikowali gen trbl, który wybiórczo reguluje G2. Ma on swoje odpowiedniki w ssaczym genomie (ich ekspresja zachodzi w komórkach macierzystych mózgu).
      Odkryliśmy gen, który nakazuje, by komórki te weszły w stan uśpienia. Kolejnym krokiem będzie zidentyfikowanie potencjalnych leków, które zablokują trbl i obudzą komórki macierzyste - tłumaczy Otsuki. Sądzimy, że podobne uśpione komórki występują w innych narządach i że nasze odkrycie pomoże ulepszyć lub wynaleźć nowe terapie regeneracyjne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wykorzystując komórki macierzyste pobrane w pobliżu warstwy granicznej wewnętrznej ludzkiej siatkówki, naukowcy z Uniwersyteckiego College'u Londyńskiego i Moorfields Eye Hospital przywrócili wzrok szczurom. Mają nadzieję, że zabieg uda się także w przypadku naszego gatunku, co pozwoliłoby na leczenie chorych np. z jaskrą.
      Brytyjczycy sądzą, że udało im się odtworzyć "zasoby" komórek zwojowych siatkówki, których aksony tworzą pasmo wzrokowe (rozciąga się ono od skrzyżowania wzrokowego do podkorowego ośrodka wzrokowego - ciała kolankowatego bocznego).
      Za zgodą rodzin akademicy pobrali z oczu przeznaczonych do przeszczepu rogówki próbki komórek macierzystych współistniejącego z neuronami i wspomagającego ich funkcje gleju Müllera. Trafiły one do hodowli laboratoryjnych i przekształciły się w komórki zwojowe siatkówki. Następnie wszczepiono je do oczu gryzoni.
      Ponieważ szczury nie miały wcześniej komórek zwojowych siatkówki, były ślepe. Po przeszczepie elektrody mocowane do łba ujawniły, że mózg reaguje na światło o niewielkim natężeniu.
      Dr Astrid Limb podkreśla, że choć jeszcze daleko do operacji w klinikach okulistycznych, poczyniono ważny krok naprzód w kierunku leczenia jaskry i chorób pokrewnych. W przebiegu jaskry podwyższone ciśnienie w gałce ocznej prowadzi do nieodwracalnego uszkodzenia nerwu wzrokowego oraz właśnie komórek zwojowych siatkówki.
      Przypomnijmy, że badania zespołu dr. Toma Reha z Uniwersytetu Waszyngtońskiego z 2008 r. wykazały, że nie tylko glej Müllera młodych ssaków jest zdolny do podziałów, w wyniku których powstają komórki progenitorowe, zdolne do rozwijania w nowe neurony. Dorosły glej także może zostać ponownie zastymulowany do podziałów.
    • przez KopalniaWiedzy.pl
      Siarkowodór - jedna z substancji odpowiadających za przykry zapach z ust - zwiększa zdolność dorosłych komórek macierzystych miazgi zęba do przekształcania się w hepatocyty.
      To pierwszy przypadek, kiedy udało się pozyskać komórki wątroby z miazgi zęba. Naukowcy, których badania opisano w artykule opublikowanym w Journal of Breath Research, cieszą się, bo uzyskano dużą liczbę hepatocytów o wysokiej czystości. "Wysoka czystość oznacza, że występuje mniej komórek, które zróżnicowały się w inną tkankę lub pozostały komórkami macierzystymi" - tłumaczy dr Ken Yaegaki z Nippon Dental University.
      Podczas eksperymentów Japończycy wykorzystali miazgę z wyrwanych w klinice zębów. Pozyskane komórki macierzyste podzielono na dwie hodowle - testowa była inkubowana w komorze siarkowodorowej. Po 3, 6 i 9 dniach pobrano próbki i sprawdzano, czy przekształciły się w hepatocyty. Komórki oglądano pod mikroskopem, badano też ich zdolność magazynowania glikogenu oraz zawartość mocznika (wątroba przekształca toksyczny amoniak w mocznik).
      W porównaniu do tradycyjnej metody [pozyskiwania hepatocytów do przeszczepu], która bazuje na bydlęcej surowicy płodowej, nasza metoda jest produktywna i co najważniejsze - bezpieczna. Pacjentom nie zagrażają potworniaki - nowotwory wywodzące się z wielopotencjalnych komórek zarodkowych.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...