Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nowy znacznik do obrazowania komórek nowotworowych

Rekomendowane odpowiedzi

Międzynarodowy zespół naukowców, w którym biorą udział uczeni z Narodowego Centrum Badań Jądrowych w Świerku, zaproponował wykorzystanie nowego związku chemicznego do obrazowania nowotworów prostaty i piersi. [99mTc]Tc-DB15 składa się ze stosowanego w diagnostyce radioaktywnego izomeru technetu Tc-99m, związanego z antagonistą (czyli substancją blokującą receptor) receptora GRPR występującego w komórkach niektórych rodzajów nowotworów.

Użycie związku [99mTc]Tc-DB15 pozwala na wykrycie nowotworu dzięki zastosowaniu Tc-99m, który podczas rozpadu emituje fotony o energiach w zakresie gamma. Fotony te są następnie rejestrowane w tomografie SPECT. Urządzenie to, podobnie do PET, obserwuje fotony pochodzące z rozpadu Tc-99m i po opracowaniu specjalnym algorytmem generuje trójwymiarowy obraz pacjenta z wyraźnie widocznymi miejscami emisji fotonów pochodzących z rozpadu radioizotopu. Technet-99m, przyłączony do antagonisty receptora, kumuluje się w komórkach o zwiększonej gęstości GRPR, czyli w komórkach rakowych. W efekcie pozwala to na zlokalizowanie i określenie aktywności komórek nowotworowych. Antagoniści receptorów komórkowych zastosowani w diagnostyce mogą też potencjalnie być wykorzystani w teranostyce, czyli terapii połączonej z diagnostyką, wykorzystując promieniowanie jonizujące w celu zabicia komórek nowotworu.

Wstępne badania nad nowym znacznikiem, przeprowadzone in vitro na komórkach raka piersi oraz raka prostaty pokazały, że komórki rakowe dobrze gromadzą znacznik. Dalsze badania, in vivo, przeprowadzono u myszy z wszczepionymi komórkami raka prostaty i piersi, wykazującymi obecność GRPR. Wykazano, że po podaniu preparat w krótkim czasie skupia się w komórkach nowotworowych. Po potwierdzeniu bezpieczeństwa stosowania badanego leku poddano tej metodzie obrazowania dwie pacjentki chorujące na nowotwór raka piersi, którego komórki posiadały receptory GRPR. Badania przeprowadzono na podstawie protokołu badawczego zatwierdzonego przez Komisję Bioetyczną Uniwersytetu Medycznego im. Karola Marcinkowskiego w Poznaniu. Pacjentki wyraziły świadomą zgodę na udział w badaniach.

Współczesna medycyna wykorzystuje już bardzo podobne strategie, do zaproponowanej przez nas, jak choćby leczenie nowotworów piersi, posiadających receptory HER2 – wyjaśnia profesor Renata Mikołajczak, współautorka badań. Nowa procedura, oparta o wykorzystanie związków antagonistycznych do receptorów GRPR, byłaby kolejną spersonalizowaną metodą w leczeniu konkretnego typu komórek rakowych, a zwiększanie liczby technik pozwala na precyzyjne i skuteczne leczenie różnych rodzajów nowotworów.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W 2019 roku polska astronom Anna Kapińska odkryła pierwszego kosmicznego ORC-a, czyli dziwny krąg radiowy (odd radio circle – ORC). Teraz naukowiec z Zakładu Astrofizyki Narodowego Centrum Badań Jądrowych, doktor Pratik Dabhade, odegrał kluczową rolę w odkryciu najbardziej odległego i największego z ORC-ów.
      Dziwne kręgi radiowe to wielkie chmury promieniowania radiowego w kształcie pierścieni, składające się z naładowanej plazmy. Niektóre z nich są naprawdę imponujące. Nowo odkryty RAD J131346.9+500320 znajduje się w odległości 7 miliardów lat świetlnych i ma ponad milion lat świetlnych średnicy. To 10-krotnie więcej niż średnica naszej galaktyki. Co więcej, obiekt tej jest zaledwie drugim dziwnym kręgiem radiowym, w którym występują dwa przecinające się pierścienie.
      Obiekt został odkryty dzięki obywatelskiemu projektowi naukowemu RAD@home Astronomy Collaboratory, przy którym współpracują naukowcy i wolontariusze-amatorzy. Wspólnie analizowali dane uzyskane z radioteleskopu LOFAR, najbardziej czułego urządzenia do pomiaru fal radiowych o niskich częstotliwościach. Składa się on z setek tysięcy prostych anten rozsianych po całej Europie. Wspólnie działają one jak wielki interferometr.
      Odkrywcy ORC-a to grupa kierowana przez naukowców z Uniwersytetu w Mumbaju. Efektem ich pracy jest nie tylko znalezienie dziwnego kręgu radiowego, ale również dwóch innych wielkich struktur. Pierwsza z nich to radio RAD J122622.6+640622, olbrzym o średnicy 3 milionów lat świetlnych. Jeden z jej dżetów – strumieni materii wyrzucanej z centrum – nagle się zagina i tworzy pierścień radiowy o średnicy około 100 000 lat świetlnych. Druga z radiogalaktyk, RAD J142004.0+621715, ma 1,4 miliona lat średnicy i również w jej przypadku jeden z dżetów tworzy na końcu pierścień. Obie galaktyki znajdują się w zatłoczonych gromadach galaktyk. To prawdopodobnie oddziaływanie z otaczającą je materią o temperaturze milionów stopni wpływa na kształt ich dżetów.
      Szczegóły na temat odkrycia opublikowano w artykule RAD@home discovery of extragalactic radio rings and odd radio circles: clues to their origins.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2019 roku polska astronom Anna Kapińska odkryła pierwszego kosmicznego ORC-a, czyli dziwny krąg radiowy (odd radio circle – ORC). Teraz naukowiec z Zakładu Astrofizyki Narodowego Centrum Badań Jądrowych, doktor Pratik Dabhade, odegrał kluczową rolę w odkryciu najbardziej odległego i największego z ORC-ów.
      Dziwne kręgi radiowe to wielkie chmury promieniowania radiowego w kształcie pierścieni, składające się z naładowanej plazmy. Niektóre z nich są naprawdę imponujące. Nowo odkryty RAD J131346.9+500320 znajduje się w odległości 7 miliardów lat świetlnych i ma ponad milion lat świetlnych średnicy. To 10-krotnie więcej niż średnica naszej galaktyki. Co więcej, obiekt tej jest zaledwie drugim dziwnym kręgiem radiowym, w którym występują dwa przecinające się pierścienie.
      Obiekt został odkryty dzięki obywatelskiemu projektowi naukowemu RAD@home Astronomy Collaboratory, przy którym współpracują naukowcy i wolontariusze-amatorzy. Wspólnie analizowali dane uzyskane z radioteleskopu LOFAR, najbardziej czułego urządzenia do pomiaru fal radiowych o niskich częstotliwościach. Składa się on z setek tysięcy prostych anten rozsianych po całej Europie. Wspólnie działają one jak wielki interferometr.
      Odkrywcy ORC-a to grupa kierowana przez naukowców z Uniwersytetu w Mumbaju. Efektem ich pracy jest nie tylko znalezienie dziwnego kręgu radiowego, ale również dwóch innych wielkich struktur. Pierwsza z nich to radio RAD J122622.6+640622, olbrzym o średnicy 3 milionów lat świetlnych. Jeden z jej dżetów – strumieni materii wyrzucanej z centrum – nagle się zagina i tworzy pierścień radiowy o średnicy około 100 000 lat świetlnych. Druga z radiogalaktyk, RAD J142004.0+621715, ma 1,4 miliona lat średnicy i również w jej przypadku jeden z dżetów tworzy na końcu pierścień. Obie galaktyki znajdują się w zatłoczonych gromadach galaktyk. To prawdopodobnie oddziaływanie z otaczającą je materią o temperaturze milionów stopni wpływa na kształt ich dżetów.
      Szczegóły na temat odkrycia opublikowano w artykule RAD@home discovery of extragalactic radio rings and odd radio circles: clues to their origins.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2019 roku polska astronom Anna Kapińska odkryła pierwszego kosmicznego ORC-a, czyli dziwny krąg radiowy (odd radio circle – ORC). Teraz naukowiec z Zakładu Astrofizyki Narodowego Centrum Badań Jądrowych, doktor Pratik Dabhade, odegrał kluczową rolę w odkryciu najbardziej odległego i największego z ORC-ów.
      Dziwne kręgi radiowe to wielkie chmury promieniowania radiowego w kształcie pierścieni, składające się z naładowanej plazmy. Niektóre z nich są naprawdę imponujące. Nowo odkryty RAD J131346.9+500320 znajduje się w odległości 7 miliardów lat świetlnych i ma ponad milion lat świetlnych średnicy. To 10-krotnie więcej niż średnica naszej galaktyki. Co więcej, obiekt tej jest zaledwie drugim dziwnym kręgiem radiowym, w którym występują dwa przecinające się pierścienie.
      Obiekt został odkryty dzięki obywatelskiemu projektowi naukowemu RAD@home Astronomy Collaboratory, przy którym współpracują naukowcy i wolontariusze-amatorzy. Wspólnie analizowali dane uzyskane z radioteleskopu LOFAR, najbardziej czułego urządzenia do pomiaru fal radiowych o niskich częstotliwościach. Składa się on z setek tysięcy prostych anten rozsianych po całej Europie. Wspólnie działają one jak wielki interferometr.
      Odkrywcy ORC-a to grupa kierowana przez naukowców z Uniwersytetu w Mumbaju. Efektem ich pracy jest nie tylko znalezienie dziwnego kręgu radiowego, ale również dwóch innych wielkich struktur. Pierwsza z nich to radio RAD J122622.6+640622, olbrzym o średnicy 3 milionów lat świetlnych. Jeden z jej dżetów – strumieni materii wyrzucanej z centrum – nagle się zagina i tworzy pierścień radiowy o średnicy około 100 000 lat świetlnych. Druga z radiogalaktyk, RAD J142004.0+621715, ma 1,4 miliona lat średnicy i również w jej przypadku jeden z dżetów tworzy na końcu pierścień. Obie galaktyki znajdują się w zatłoczonych gromadach galaktyk. To prawdopodobnie oddziaływanie z otaczającą je materią o temperaturze milionów stopni wpływa na kształt ich dżetów.
      Szczegóły na temat odkrycia opublikowano w artykule RAD@home discovery of extragalactic radio rings and odd radio circles: clues to their origins.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Reaktor badawczy MARIA w trybie ekspresowym zmienił harmonogram pracy, by zapobiec brakom w dostawach medycznego molibdenu-99 (Mo-99). Działanie miało związek z usterką w holenderskim reaktorze HFR, który należy do grona kilku światowych dostawców tego radionuklidu.
      Molibden-99 jest podstawowym radioizotopem służącym do uzyskiwania radioaktywnego technetu. Ten zaś jest wykorzystywany w większości procedur medycyny nuklearnej. Molibden-99 jest produkowany w reaktorach badawczych na drodze napromieniania neutronami tarcz uranowych.
      W zeszłym tygodniu przed jednym z rutynowych uruchomień reaktora HFR wykryto usterkę w obiegu chłodzenia (przed każdym kolejnym uruchomieniem dokonuje się kontroli wszystkich instalacji). Z tego względu nie można go było uruchomić zgodnie z planem, czyli 20 stycznia. Okazało się jednak, że już 21 stycznia produkcję HFR przejął reaktor MARIA w Otwocku-Świerku pod Warszawą.
      20 stycznia byliśmy w Świerku w trakcie spotkania z naszymi partnerami produkującymi medyczny molibden-99, kiedy jednemu z nich zadzwonił telefon - opowiada Paweł Nowakowski, dyrektor Departamentu Eksploatacji Obiektów Jądrowych w Narodowym Centrum Badań Jądrowych (NCBJ). Nasz gość odszedł na chwilę na bok, by odebrać połączenie i po chwili spytał, czy za dwa dni jesteśmy w stanie awaryjnie napromienić dodatkowe tarcze uranowe. Dobro pacjentów onkologicznych jest dla nas niezwykle ważne, więc zgodziłem się bez wahania. Jesteśmy również przygotowani do przeprowadzenia kolejnych napromieniań w najbliższych tygodniach.
      Jak podkreślono w komunikacie prasowym NCBJ, zespół ekspertów przeprowadził szczegółowe obliczenia optymalizujące konfigurację rdzenia MARII. Później zatwierdziła je Państwowa Agencja Atomistyki. Udało się to zrealizować w zaledwie parę godzin.
      Zadanie wykonano tak szybko, gdyż od 2010 r. MARIA jest przygotowana do napromieniania tarcz uranowych do produkcji molibdenu-99. W roku przeprowadza się kilka cykli.
      NCBJ zaznacza, że w razie nieplanowanych przestojów u głównych dostawców reaktor badawczy MARIA może zmienić harmonogram i zapełnić lukę.
      Warto podkreślić, że MARIA jest jednym z najważniejszych dostawców napromienianych tarcz uranowych do produkcji Mo-99, odpowiedzialnym za około 10% światowych dostaw.
       

       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Porównanie trzech komercyjnych systemów sztucznej inteligencji wykorzystywanej w diagnostyce obrazowej raka piersi wykazało, że najlepszy z nich sprawuje się równie dobrze jak lekarz-radiolog. Algorytmy badano za pomocą niemal 9000 obrazów z aparatów mammograficznych, które zgromadzono w czasie rutynowych badań przesiewowych w Szwecji.
      Badania przesiewowe obejmujące dużą część populacji znacząco zmniejszają umieralność na nowotwory piersi, gdyż pozwalają na wyłapanie wielu przypadków na wczesnym etapie rozwoju choroby. W wielu takich przedsięwzięciach każde zdjęcie jest niezależnie oceniane przez dwóch radiologów, co zwiększa skuteczność całego programu. To jednak metoda kosztowna, długotrwała, wymagająca odpowiednich zasobów. Tutaj mogłyby pomóc systemy SI, o ile będą dobrze sobie radziły z tym zadaniem.
      Chcieliśmy sprawdzić, na ile dobre są algorytmy SI w rozpoznawaniu obrazów mammograficznych. Pracuję w wydziale radiologii piersi i słyszałem o wielu firmach oferujących takie algorytmy. Jednak trudno było orzec, jaka jest ich jakość, mówi Fridrik Strand z Karolinska Institutet.
      Każdy z badanych algorytmów to odmiana sieci neuronowej. Każdy miał do przeanalizowania zdjęcia piersi 739 kobiet, u których w czasie krótszym niż 12 miesięcy od pierwotnego badania wykryto raka piersi oraz zdjęcia 8066 kobiet, u których w czasie 24 miesięcy od pierwotnego badania nie wykryto raka piersi. Każdy z algorytmów miał ocenić zdjęcie w skali od 0 do 1, gdzie 1 oznaczało pewność, iż na zdjęciu widać nieprawidłową tkankę.
      Trzy systemy, oznaczone jako AI-1, AI-2 oraz AI-3 osiągnęły czułość rzędu 81,9%, 67,0% oraz 67,4%. Dla porównania, czułość w przypadku radiologów jako pierwszych interpretujących dany obraz wynosiła 77,4%, a w przypadku radiologów, którzy jako drudzy dokonywali opisu było to 80,1%. Najlepszy z algorytmów potrafił wykryć też przypadki, które radiolodzy przeoczyli przy badaniach przesiewowych, a kobiety zostały w czasie krótszym niż rok zdiagnozowane jako chore.
      Badania te dowodzą, że algorytmy sztucznej inteligencji pomagają skorygować fałszywe negatywne diagnozy postawione przez lekarzy-radiologów. Połączenie możliwości AI-1 z przeciętnym lekarzem-radiologiem zwiększało liczbę wykrytych nowotworów piersi o 8%.
      Zespół z Karolinska Institutet spodziewa się, że jakość algorytmów SI będzie rosła. Nie wiem, jak efektywne mogą się stać, ale wiem, że istnieje kilka sposobów, by je udoskonalić. Jednym z nich może być np. ocenianie wszystkich 4 zdjęć jako całości, by można było porównać obrazy z obu piersi. Inny sposób to porównanie nowych zdjęć z tymi, wykonanymi wcześniej, by wyłapać zmiany, mówi Strand.
      Pełny opis eksperymentu opublikowano na łamach JAMA Oncology.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...