Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Na Ziemi uda się odtworzyć procesy z czarnych dziur i wybuchów supernowych?

Rekomendowane odpowiedzi

Zjawiska istotne dla czarnych dziur, eksplozji supernowych i innych ekstremalnych wydarzeń kosmicznych mogą zostać odtworzone na Ziemi, twierdzą naukowcy z Pinceton University, SLAC National Accelerator Laboratory oraz Princeton Plasma Physics Laboratory. Dowodzą oni, że współczesna technologia pozwala na uzyskanie procesów kaskadowych opisywanych przez elektrodynamikę kwantową (QED cascades). Procesy takie leżą u podstaw eksplozji supernowych czy szybkich rozbłysków radiowych, w czasie których w ciągu milisekund emitowane jest tyle energii, ile Słońce emituje w ciągu kilku dni.

Kenan Qu, Sebastian Meuren i Nahaniel J. Fisch poinfornowali na łamach Physical Review Letters, o uzyskaniu pierwszego teoretycznego dowodu, że interakcja laboratoryjnego lasera z gęstym strumieniem elektronów doprowadzi do pojawienia się kaskad. Wykazaliśmy, że to, o czym sądzono, iż jest niemożliwe, w rzeczywistości jest możliwe. To zaś pokazuje, że zjawisko, którego dotychczas nie mogliśmy bezpośrednio obserwować, można uzyskać za pomocą najnowocześniejszych laserów i urządzeń do generowania strumienia elektronów, mówi główny autor artykułu, Kenan Qu.

Zderzenie silnego impulsu laserowego ze strumieniem elektronów o wysokiej energii prowadzi do powstania gęstej chmury par elektron-pozyton, które zaczynają wchodzić w interakcje. To zaś powoduje kolektywne zachowanie się plazmy, co z kolei wpływa na to, jak pary te wspólnie reagują na pola elektryczna lub magnetyczne.

Plazma, zjonizowana materia przypominająca gaz, zawiera swobodne cząstki – jony i elektrony – i stanowi około 99% widzialnego wszechświata. Napędza ona reakcje w gwiazdach, a zachodzące w niej procesy są silnie zależne od pól elektromagnetycznych.

"Poszukiwaliśmy sposobów, na odtworzenie warunków, w jakich powstaną pary elektron-pozyton o gęstości na tyle dużej, by doszło do kolektywnego zachowania się plazmy", mówi Qu. Już znacznie wcześniej wiedziano, że wystarczająco silne lasery, pola magnetyczne lub elektryczne mogą doprowadzić do pojawienia się wspomnianych procesów kaskadowych. Jednak wyliczenia pokazywały, że uzyskanie tak intensywnych promieni laserowych, pól magnetycznych i elektrycznych jest poza naszymi możliwościami.

Okazuje się, że połączenie współczesnych technologii laserowych z relatywistycznymi strumieniami elektronów wystarczy, by zaobserwować takie zjawisko, mówi profesor Nat Fisch. Kluczem jest tutaj wykorzystanie lasera, który spowolni pary elektron-pozyton tak, by ich masa spadła, przez co zwiększy się ich wpływ na częstotliwość plazmy i wzmocni kolektywne zachowania plazmy. Wykorzystanie już dostępnych technologii jest tańsze, niż próba zbudowania lasera o olbrzymiej intensywności.

Teraz autorzy badań chcą sprawdzić swoją przewidywania w SLAC National Accelerator Laboratory. Właśnie trwają tam prace nad laserem o umiarkowanej intensywności, a źródło elektronów już się tam znajduje. Jeśli dowiedziemy prawdziwości naszych obliczeń, zaoszczędzimy miliardy dolarów, dodaje Qu.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W dobie niezmiennie ciekawych odkryć, szczególnie związanych z JWST, wracamy do fundamentalnych pytań dotyczących początków Wszechświata. W odległości 12,8 miliardów lat świetlnych od Ziemi znajduje się czarna dziura o masie około miliarda mas Słońca. Powstała zatem w czasie krótszym niż miliard lat po Wielkim Wybuchu. Dziurę odkryto przed dwoma laty, a dzięki teleskopowi Chandra wiemy, że zasila ona kwazar RACS J0320-35. Chandra pozwolił też stwierdzić, że czarna dziura rośnie w rekordowo szybkim tempie.
      Gdy materia opada na czarną dziurę, jest podgrzewana i pojawia się intensywne promieniowanie w szerokim zakresie. Promieniowanie to wywiera ciśnienie na opadający materiał. Gdy tempo opadania materii osiągnie wartość krytyczną, ciśnienie promieniowania równoważy grawitację czarnej dziury i materiał nie może już na nią szybko opadać. Ta wartość krytyczna nazywana została granicą Eddingtona.
      Naukowcy uważają obecnie, że czarne dziury przybierające na masie wolniej niż pozwala granica Eddingtona muszą rozpocząć swoje istnienie jako obiekty o około 10 000 mas Słońca lub więcej, by w ciągu miliarda lat po Wielkim Wybuchu osiągnąć masę miliard razy większą od naszej gwiazdy. Żeby jednak czarna dziura rozpoczęła swoje istnienie od tak dużej masy, musiałaby powstać w wyniku rzadko zachodzącego procesu zapadnięcia się wielkiej chmury gęstego gazu zawierającego niezwykle małe ilości pierwiastków cięższych od helu.
      Jeśli jednak RACS J0320-35 rzeczywiście rośnie w tempie 2,4-krotnie przekraczającym granicę Eddingtona – jak na to wskazują badania – i jeśli proces ten zachodzi przez dłuższy czas, to czarna dziura mogła powstać w bardziej typowy sposób, wskutek zapadnięcia się masywnej gwiazdy o masie nie przekraczającej 100 Słońc.
      Znając masę czarnej dziury i tempo jej rośnięcia, naukowcy są w stanie obliczyć, jaką miała masę, gdy powstała. To z kolei pozwala na testowanie różnych teorii dotyczących powstawania czarnych dziur. W przypadku RACS J0320-35 naukowcy porównali modele teoretyczne z danymi z Chandry dotyczącymi promieniowania rentgenowskiego. Okazało się, że uzyskane przez teleskop spektrum promieniowania rentgenowskiego wskazuje, że czarna dziura rośnie szybciej niż granica Eddingtona, a znajduje to potwierdzenie w spektrum w zakresie widzialnym i podczerwieni.
      Tego typu badania przybliżają nas do rozwiązania zagadki dotyczącej powstania pierwszego pokolenia czarnych dziur. Inną tajemnicą, do rozwikłania której się zbliżyliśmy, było zauważenie dżetów cząstek uciekających od czarnej dziury z prędkością światła. Tego typu dżety są rzadko obserwowane w przypadku kwazarów, a to może oznaczać, że szybko rosnąca czarna dziura może mieć z nimi coś wspólnego.
      Artykuł X-Ray Investigation of Possible Super-Eddington Accretion in a Radio-loud Quasar at z = 6.13 został opublikowany na łamach The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W dobie niezmiennie ciekawych odkryć, szczególnie związanych z JWST, wracamy do fundamentalnych pytań dotyczących początków Wszechświata. W odległości 12,8 miliardów lat świetlnych od Ziemi znajduje się czarna dziura o masie około miliarda mas Słońca. Powstała zatem w czasie krótszym niż miliard lat po Wielkim Wybuchu. Dziurę odkryto przed dwoma laty, a dzięki teleskopowi Chandra wiemy, że zasila ona kwazar RACS J0320-35. Chandra pozwolił też stwierdzić, że czarna dziura rośnie w rekordowo szybkim tempie.
      Gdy materia opada na czarną dziurę, jest podgrzewana i pojawia się intensywne promieniowanie w szerokim zakresie. Promieniowanie to wywiera ciśnienie na opadający materiał. Gdy tempo opadania materii osiągnie wartość krytyczną, ciśnienie promieniowania równoważy grawitację czarnej dziury i materiał nie może już na nią szybko opadać. Ta wartość krytyczna nazywana została granicą Eddingtona.
      Naukowcy uważają obecnie, że czarne dziury przybierające na masie wolniej niż pozwala granica Eddingtona muszą rozpocząć swoje istnienie jako obiekty o około 10 000 mas Słońca lub więcej, by w ciągu miliarda lat po Wielkim Wybuchu osiągnąć masę miliard razy większą od naszej gwiazdy. Żeby jednak czarna dziura rozpoczęła swoje istnienie od tak dużej masy, musiałaby powstać w wyniku rzadko zachodzącego procesu zapadnięcia się wielkiej chmury gęstego gazu zawierającego niezwykle małe ilości pierwiastków cięższych od helu.
      Jeśli jednak RACS J0320-35 rzeczywiście rośnie w tempie 2,4-krotnie przekraczającym granicę Eddingtona – jak na to wskazują badania – i jeśli proces ten zachodzi przez dłuższy czas, to czarna dziura mogła powstać w bardziej typowy sposób, wskutek zapadnięcia się masywnej gwiazdy o masie nie przekraczającej 100 Słońc.
      Znając masę czarnej dziury i tempo jej rośnięcia, naukowcy są w stanie obliczyć, jaką miała masę, gdy powstała. To z kolei pozwala na testowanie różnych teorii dotyczących powstawania czarnych dziur. W przypadku RACS J0320-35 naukowcy porównali modele teoretyczne z danymi z Chandry dotyczącymi promieniowania rentgenowskiego. Okazało się, że uzyskane przez teleskop spektrum promieniowania rentgenowskiego wskazuje, że czarna dziura rośnie szybciej niż granica Eddingtona, a znajduje to potwierdzenie w spektrum w zakresie widzialnym i podczerwieni.
      Tego typu badania przybliżają nas do rozwiązania zagadki dotyczącej powstania pierwszego pokolenia czarnych dziur. Inną tajemnicą, do rozwikłania której się zbliżyliśmy, było zauważenie dżetów cząstek uciekających od czarnej dziury z prędkością światła. Tego typu dżety są rzadko obserwowane w przypadku kwazarów, a to może oznaczać, że szybko rosnąca czarna dziura może mieć z nimi coś wspólnego.
      Artykuł X-Ray Investigation of Possible Super-Eddington Accretion in a Radio-loud Quasar at z = 6.13 został opublikowany na łamach The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jony wystrzeliwane podczas rozbłysków słonecznych są 6,5-krotnie cieplejsze niż dotychczas sądzono, donoszą naukowcy z Wielkiej Brytanii i USA. Ich odkrycie stanowi jednocześnie rozwiązanie zagadki, która od lat 70. XX wieku trapiła specjalistów zajmujących się badaniem naszej gwiazdy. Wówczas zauważono, że linie spektralne promieniowania słonecznego są szersze niż spodziewane w zakresie ekstremalnego ultrafioletu i promieniowania rentgenowskiego. Przez 50 lat uważano, że ma to związek z turbulencjami, jednak nikt nie potrafił zidentyfikować natury tych turbulencji, co stawiało całą hipotezę pod znakiem zapytania.
      Rozbłyski słoneczne to skutek gwałtownego uwolnienia energii z zewnętrznych warstw atmosfery Słońca, w wyniku której jej fragmenty są podgrzewane do temperatury ponad 10 milionów stopni Celsjusza. Badanie tych wydarzeń ma jak najbardziej praktyczny wymiar. Gwałtowne skoki promieniowania związane z rozbłyskami zagrażają satelitom, astronautom, zaburzają górne warstwy atmosfery Ziemi.
      Badacze chcieli poznać mechanizm, za pomocą którego rozbłyski podgrzewają plazmę – złożoną z jonów i elektronów – do ponad 10 milionów stopni Celsjusza. W trakcie swych badań zauważyli, że jony, stanowiące nawet połowę plazmy, są podgrzewane znacznie silniej niż elektrony. Okazało się, że ich temperatura sięga 60 milionów stopni Celsjusza.
      Jesteśmy niezwykle podekscytowani spostrzeżeniem, że w wyniku rekoneksji magnetycznej jony osiągają 6,5-krotnie wyższą temperaturę niż elektrony. Wydaje się to uniwersalną zasadą, którą potwierdza to, co dzieje się w pobliżu Ziemi, badania wiatru słonecznego i symulacje komputerowe. Dotychczas jednak nikt nie łączył tego z rozbłyskami słonecznymi. Przyjmowano, że jony i elektrony muszą mieć tę samą temperaturę. Jednak gdy obliczyliśmy wszystko ponownie, korzystając z nowych danych, okazało się, że w wielu istotnych fragmentach rozbłysków słonecznych różnice temperatur pomiędzy jonami i elektronami mogą utrzymywać się przez dziesiątki minut, mówi główny autor badań, doktor Alexander Russell z University of St Andrews.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół, kierowany przez naukowców z University of Texas w Austin, zidentyfikował najbardziej odległą i najstarszą czarną dziurę, jaką kiedykolwiek potwierdzono obserwacyjnie. Dziura i jej macierzysta galaktyka CAPERS-LRD-z9, istniały zaledwie 500 milionów lat po Wielkim Wybuchu, 13,3 miliarda lat temu.

      Odkrycia dokonano za pomocą teleskopu Jamesa Webba (JWST) w ramach programu CAPERS (CANDELS-Area Prism Epoch of Reionization Survey), którego celem jest identyfikacja i analiza najodleglejszych galaktyk. Kluczowe było zastosowanie spektroskopii, pozwalającej na rozszczepienie światła na poszczególne długości fal i wykrycie charakterystycznych przesunięć widma, wywołanych ruchem gazu wokół czarnej dziury. Dzięki temu astronomowie wykryli gaz poruszający się z prędkością ponad 3500 km/s. To sygnał wskazujący na istnienie aktywnego jądra galaktycznego. Zauważono je przy przesunięciu ku czerwieni z = 9,288.

      Galaktyka należy do intrygującej klasy Małych Czerwonych Kropek (Little Red Dots). To odkryte w 2024 roku przez JWST kompaktowe obiekty, które pojawiły się między 0,6 a 1,5 miliarda lat po powstaniu wszechświata. W przypadku CAPERS-LRD-z9 źródłem intensywnego blasku jest supermasywna czarna dziura. Jej masę oszacowano na nawet 300 milionów mas Słońca, co stanowi do połowy masy wszystkich gwiazd w galaktyce.

      Modelowanie emisji w zakresie UV i optycznym sugeruje, że czarna dziura jest otoczona gęstym obłokiem neutralnego gazu o gęstości rzędu 1010 cząsteczek wodoru na centymetr sześcienny. Ten gaz, działając jak filtr, nadaje obserwowanej galaktyce charakterystyczny czerwony odcień. Obserwacje wskazują również na małe rozmiary galaktyki, jej średnica to około 1100 lat świetlnych.

      Tak masywna czarna dziura w tak młodym Wszechświecie rodzi fundamentalne pytania o mechanizmy ich powstawania. Być może czarne dziury we wczesnym wszechświecie rosły znacznie szybciej, niż zakładają obecne modele, albo też rozpoczynały swoje istnienie od znacznie większej masy.
      Więcej na ten temat: CAPERS-LRD-z9: A Gas-enshrouded Little Red Dot Hosting a Broad-line Active Galactic Nucleus at z = 9.288.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na University of Queensland (UQ) prowadzone są eksperymenty nad wykorzystaniem pól magnetycznych do ochrony wchodzących w atmosferę pojazdów kosmicznych przed nadmierną temperaturą i przeciążeniami. Kluczowym elementem eksperymentów będzie zbadanie deformacji pól magnetycznych w kontakcie z gorącą plazmą. Ich celem jest zaś opracowanie technologii, która pozwoli na budowę bardziej bezpiecznych, lżejszych ich tańszych pojazdów kosmicznych.
      Pojazdy kosmiczne wchodzące w atmosferę Ziemi pędzą z prędkością około 30 tys. km/h. Powietrze wokół nich staje się tak gorące, że zamienia się plazmę. Przed spłonięciem pojazdy chronione są za pomocą osłon termicznych. Celem profesora Gildfinda z UQ jest odepchnięcie tej plazmy od pojazdu za pomocą pól magnetycznych generowanych przez nadprzewodzące magnesy. To powinno znacząco zmniejszyć temperatury, jakich doświadcza pojazd wchodzący w atmosferę czy to Ziemi czy Marsa. Tym samym powrót taki będzie bezpieczniejszy, osłony termicznie nie będą musiały być tak potężne jak obecnie, pojazd stanie się więc lżejszy i tańszy. Podobnie jak cała misja związana z jego wystrzeleniem.
      Dodatkową korzyścią z wykorzystania pól magnetycznych jest fakt, że gdy wywierają one nacisk na plazmę, plazma odpowiada tym samym. Pojawia się siła, która dodatkowo spowalnia opadający na planetę pojazd. W ten sposób mamy dodatkowy element hamujący. Pojawia się on wcześniej i spowolni pojazd jeszcze zanim otaczająca go kula ognia osiągnie maksymalną intensywność, a przeciążenia staną się trudne do zniesienia. A obniżenie temperatury powierzchni pojazdu oznacza, że osłony termiczne mogą być lżejsze, bez narażania na szwank bezpieczeństwa, wyjaśnia uczony.
      Gildfind i jego zespół prowadzą eksperymenty w Centre for Hypersonics University of Queensland, jednym z najważniejszych środków badań nad prędkościami hipersonicznymi, definiowanymi jako prędkości co najmniej 5-krotnie większe od prędkości dźwięku. Dotychczas prowadzono niewiele badań nad deformacją pól magnetycznych przez plazmę utworzoną wokół szybko poruszającego się obiektu. Natomiast zupełnie nic nie wiadomo na temat tego, jak taka technologia sprawdziłaby się w przypadku obiektu wielkości pojazdu kosmicznego. Modele i analizy pokazują, że powinien być to znaczny efekt, ale dopóki tego nie przetestujemy, nie będziemy pewni, stwierdza uczony.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...