Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Trwa najdłuższa od 50 lat erupcja wulkaniczna na Islandii
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Gdy klimatolodzy z Instytutu Nielsa Bohra na Uniwersytecie w Kopenhadze poinformowali, że na podstawie badań rdzeni lodowych odkryli erupcję wulkaniczną, która wydarzyła się około 2900 roku przed naszą erą i musiała mieć katastrofalne skutki dla ówczesnych społeczności rolniczych północnej Europy, ich koledzy z wydziału archeologii, Narodowego Muzeum Danii i Muzeum Borholmu, jeszcze raz przyjrzeli się „kamieniom słonecznym” ze stanowiska Vasagård na Bornholmie.
Erupcje wulkaniczne miewały wpływ na ludzką historię. Dość wspomnieć erupcję Thery, wybuch na Alasce z roku 43, który wywołał głód i choroby w basenie Morza Śródziemnego czy najsłynniejszą z erupcji, kiedy to Wezuwiusz zniszczył Pompeje, dając nam unikatową możliwość badania starożytnego rzymskiego miasta.
Na neolitycznym stanowisku Vasagård na Bornholmie znaleziono ponad 600 tzw. kamieni słonecznych. Te niewielkie płaskie kamyki z wyrzeźbionymi wzorami i motywami Słońca znajdowane są tylko na tej wyspie. Zdaniem archeologów są symbolem płodności ziemi i prawdopodobnie zostały poświęcone Słońcu, by zapewnić sobie pomyślność zbiorów. Mieszkańcy neolitycznego Bornholmu wykonali wiele takich kamieni, które następnie włożyli do wykopów wraz z pozostałościami rytualnych posiłków, potłuczonych glinianych naczyń, zwierzęcych kości oraz obiektów z krzemienia i przysypali ziemią.
Kamienie datowane są na około 2900 rok p.n.e. Gdy więc archeolodzy dowiedzieli się o odkryciu erupcji wulkanicznej, która mniej więcej w tym samym czasie wyrzuciła do atmosfery wielkie ilości pyłów, a te przesłoniły Słońce na północy Europy, natychmiast połączyli oba fakty. Od dawna wiemy, że Słońce było ważnym punktem odniesienia dla wczesnych kultur rolniczych północnej Europy. Zbiory były zależne od Słońca. Gdy ono zniknęło na dłuższy czas z powodu pyłu, który pojawił się w stratosferze, musiało to być przerażające doświadczenie dla neolitycznych rolników, mówi Rune Iversen z Uniwersytetu w Kopenhadze. Uczeni sądzą, że istnieje związek pomiędzy erupcją wulkaniczną, wywołaną przez nią zmianą klimatu i pojawieniem się rytualnych „kamieni słonecznych”. Mamy teraz podstawy przypuszczać, że neolityczni mieszkańcy Bornholmu poświęcali kamienie słoneczne by chronić się przed dalszą niekorzystną zmianą klimatu, albo też wyrażali w ten sposób wdzięczność za to, że Słońce wróciło, dodaje naukowiec.
Około 2900 roku p.n.e. neolityczne kultury północnej Europy doświadczyły nie tylko pogorszenia się klimatu. Badania DNA wykazały, że w tym samym czasie panowały epidemie śmiertelnych chorób. Z danych archeologicznych wiemy natomiast, że w tym czasie zanika też dominująca dotychczas kultura pucharów lejkowatych.
„Kamienie słoneczne” z Bornholmu nie mają swojego odpowiednika w Europie. Najbliższe, co przychodzi mi do głowy w kontekście kultury słońca w neolicie są niektóre grobowce z południowej Skandynawii i struktury takie jak Stonehenge, przez niektórych łączone z Słońcem. Kamienie słońca są bez wątpienia z nim związane. To niezwykłe odkrycie, które pokazuje, depozyty ku czci Słońca są bardzo starym zjawiskiem. Na południu Skandynawii pojawiają się one ponownie w postaci licznych dużych skarbów złotych przedmiotów złożonych po wielkiej erupcji wulkanicznej z 536 roku, dodaje Lasse Vilien Sørensen z Narodowego Muzeum Danii.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W 1831 roku wielka erupcja wulkaniczna doprowadziła do globalnego spadku temperatur, zmniejszenia plonów i głodu. Felix Mendelssohn, który latem podróżował przez Alpy, pisał, że jest zimno jak w zimie, a na najbliższych wzgórzach leży głęboki śnieg. Erupcja z 1831 roku pozostawała najbardziej tajemniczą z niedawnych erupcji wulkanicznych. Wiadomo, że zaburzenia pogodowe, spadek temperatury i głód spowodował wulkan. Nie było jednak wiadomo, który. Do teraz.
Międzynarodowy zespół naukowy, na którego czele stał doktor William Hutchinson ze szkockiego University of St. Andrews poinformował o uzyskaniu idealnego dopasowania pomiędzy popiołem z 1831 roku uzyskanym z rdzenia lodowego, a popiołem z wulkanu. Dopiero od niedawna pojawiła się możliwość pozyskania mikroskopowych fragmentów popiołu z polarnych rdzeni lodowych i wykonania szczegółowych analiz chemicznych. Te fragmenty są niezwykle małe, ich średnica nie przekracza 1/10 średnicy ludzkiego włosa, mówi Hutchinson. Uczony wraz z zespołem dokładnie datował popiół i jednoznacznie powiązał go z Wulkanem Zawaryckiego na wyspie Simuszir, która stanowi część Kuryli. Erupcja utworzyła kalderę wulkaniczną o szerokości 3 kilometrów.
Analizy wykazały, że do erupcji wulkanu doszło na przełomie wiosny i lata 1831 roku. Uzyskane z rdzeni lodowych fragmenty popiołu porównano z próbkami okolicznych wulkanów, które wiele dekad wcześniej trafiły na uniwersytet. Moment, w którym badaliśmy jednocześnie próbki z rdzenia i z tego właśnie wulkanu, był niezwykły. Nie mogłem uwierzyć, że dane są identyczne. Później spędziłem wiele czasu zbierając i analizując informacje o erupcjach na Kurylach i ich zasięgu, by upewnić się, że powiązanie było prawidłowe, ekscytuje się Hutchinson. Uczony przypomina, że na Ziemi istnieje wiele słabo zbadanych wulkanów położonych w odległych regionach globu, co pokazuje, jak trudno będzie przewidzieć, gdzie i kiedy dojdzie do kolejnej wielkiej erupcji.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Io, księżyc Jowisza, to najbardziej aktywne pod względem wulkanicznym ciało Układu Słonecznego. Jest on rozmiarów mniej więcej ziemskiego Księżyca, a istnieje na nim około 400 aktywnych wulkanów. Księżyc został odkryty przez Galileusza 8 stycznia 1610 roku, jednak na odkrycie wulkanów trzeba było czekać do 1979 roku. Pierwszy dowód na aktywność wulkaniczną zauważyła Linda Morabito na zdjęciach przesłanych przez sondę Voyager 1.
Od czasu odkrycia Morabito specjaliści zastanawiali się, w jaki sposób lawa zasila wulkany. Czy płytko pod powierzchnią znajduje się ocean lawy, czy też źródła są bardziej zlokalizowane. Wiedzieliśmy, że dane z dwóch bardzo bliskich przelotów sondy Juno powinny pozwolić na bliższe przyjrzenie się temu zagadnieniu, mówi Scott Bolton z Southwest Research Institute w San Antonio.
W grudniu 2023 i lutym 2024 sonda Juno przeleciała w odległości zaledwie 1500 kilometrów od powierzchni Io. Za pomocą radaru dopplerowskiego działającego w dwóch zakresach, zebrała bardzo szczegółowe dane na temat grawitacji księżyca. W ten sposób udało się zebrać bardziej szczegółowe informacje na temat występującego na Io grzania pływowego.
Io znajduje się bardzo blisko gigantycznego Jowisza. Obiegając planetę, doświadcza zmian jej pola grawitacyjnego, które powodują, że księżyc jest bez przerwy ściskany i rozciągany. To zaś wywołuje ciągłe tarcie, roztapiające fragmenty wnętrza księżyca. Wiedzieliśmy, że jeśli pod powierzchnią istnieje ocean magmy, sygnatura grzania pływowego będzie znacznie większa, niż w przypadku bardziej sztywnej struktury wewnętrznej. Zatem, w zależności od danych zebranych przez Juno z pola grawitacyjnego Io, powinniśmy wiedzieć, czy pod powierzchnią księżyca znajduje się ocean, wyjaśnia Bolton.
Naukowcy porównali dane z Juno z dwoma wcześniejszymi przelotami wykonanymi przez inne misje i stwierdzili, że Io nie posiada oceanu magmy. Z tego wynika, że każdy wulkan Io jest prawdopodobnie zasilany z własnej komory magmowej.
Odkrycie, że grzanie pływowe nie musi prowadzić do powstania magmowego oceanu spowodowało, że musieliśmy przemyśleć wewnętrzną strukturę Io. Ma to też znaczenie dla naszego rozumienia innych księżyców, jak Enceladus i Europa, a nawet dla planet pozasłonecznych, dodaje Ryan Park z Solad System Dynamics Group w Jet Propulsion Laboratory.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W 1980 roku doszło do największej erupcji wulkanicznej w historii USA i jednej z najpotężniejszych erupcji wulkanicznych XX wieku, wybuchu wulkanu Mount St. Helens. Wybuch zabił życie w promieniu wielu kilometrów. Niecałe trzy lata później naukowcy przeprowadzili wyjątkowy, trwający zaledwie jeden dzień, eksperyment nad odrodzeniem życia w regionie. Wypuścili gofferniki krecie (Thomomys talpoides), gryzonie z rodzaju gofferowatych. Dzisiaj, ponad 40 lat później, pozytywne skutki eksperymentu wciąż są widoczne.
Gofferowate prowadzą podziemny tryb życia. Kopiąc nory napowietrzają i mieszają ziemię. Na powierzchnię ziemi wychodzą nocą, poszukując pożywienia. Rolnicy uważają je za szkodniki.
Gdy materiał, który został wyrzucony przez wulkan, wystygł, naukowcy wysunęli hipotezę, że gryzonie, przekopując się przez ziemię, mogą doprowadzić do przemieszczenia bakterii i grzybów na powierzchnię, pomagając w ten sposób w odtworzeniu życia, wspomagają wzrost roślin i powrót zwierząt. Dwa lata po eksplozji postanowili tę hipotezę przetestować. Nie spodziewali się jednak, że wyniki eksperymentu będą widoczne do dzisiaj. W latach 80. po prostu testowaliśmy krótkoterminowy wpływ gofferowatych na pozbawiony życia krajobraz. Kto mógł przewidzieć, że wystarczy wypuścić te zwierzęta na 1 dzień, a skutki tego będą widoczne do dzisiaj, 40 lat później, mówi mikrobiolog Michael Allen z Uniwersytetu Kalifornijskiego w Riverside.
Wtedy, w 1983 roku Allen i James McMahon z Utah State University, polecieli śmigłowcem nad obszary zniszczone przez erupcję. Zauważyli tam kilka rachitycznych roślinek, które wyrosły z nasion upuszczonych przez ptaki, ale z powodu braku składników odżywczych w glebie nie rozwijały się zbyt dobrze. Allen i McMahon wypuścili w 2 ściśle wyznaczonych miejscach kilka gofferników krecich. Po 1 dniu zwierzęta zabrano z powrotem.
Już sześć lat później w miejscach gdzie wypuszczono zwierzęta, naukowcy naliczyli 40 000 roślin. Miejsca sąsiednie, do których zwierzęta nie dotarły, nadal były niemal pozbawione życia.
Gryzonie, mieszając ziemię, wydobyły na powierzchnię grzyby mykoryzowe. Z wyjątkiem nielicznych gatunków korzenie nie są wystarczająco wydajne, by zapewnić roślinie potrzebne składniki odżywcze i wodę. Grzyby transportują te składniki do roślin, a w zamian otrzymują węgiel, którego potrzebują do własnego wzrostu, mówi Allen. Rola grzybów mykoryzowych jest szczególnie ważna w środowiskach ubogich w składniki odżywcze. Wystarczył jeden dzień, by gryzonie przygotowały środowisko potrzebne do wzrostu roślin.
Drugim z ważnych aspektów badań jest pokazanie, jak ważne są grzyby dla ponownego wzrostu roślin po katastrofach naturalnych. Na jednym ze zboczy wulkanu rósł stary las iglasty. Popioły wulkaniczne pokryły drzewa, doprowadziły do przegrzania i opadnięcia igieł. Naukowcy obawiali się, że utrata igieł doprowadzi do zagłady lasu. Tak się jednak nie stało.
Drzewa miały bowiem bogate kolonie grzybów mykoryzowych. Te bardzo szybko wykorzystały składniki odżywcze z opadniętych igieł i dostarczyły je do drzew. Drzewa odrodziły się niemal natychmiast. Nie zginęły, jak wszyscy się obawiali, mówi współautorka najnowszych badań, mikrobiolog Emma Aronson. Co więcej, jeszcze przed erupcją, po drugiej strony wulkanu, wycięto wiele hektarów lasu. Drzewa zostały stamtąd zabrane, więc nie było igieł, które zasiliłyby glebę składnikami odżywczymi. Do dzisiaj mało co tam rośnie. To naprawdę szokujące porównanie, gdy widzi się stary las, którego gleba została zasilona przez igły i martwy obszar zniszczony przez człowieka, dodaje Aronson.
Badania pokazują, jak wielka jest odporność natury na katastrofy naturalne i jak może się ona. Nie możemy ignorować sieci współzależności w naturze. Szczególnie tych elementów, których nie widzimy, jak grzyby i mikroorganizmy, stwierdzają badacze.
Z pracą Microbial community structure in recovering forests of Mount St. Helens można zapoznać się na łamach Frontiers in Microbiomes.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.