Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Szybsza elektronika dzięki stanowi przejściowemu między izolatorem a przewodnikiem?
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z Northeastern University odkryli, w jaki sposób można na żądanie zmieniać elektroniczny stan materii. Potencjalnie może to doprowadzić do stworzenia materiałów elektronicznych, które pracują z 1000-krotnie większą prędkością niż obecnie i są bardziej wydajne. Możliwość dowolnego przełączania pomiędzy przewodnikiem a izolatorem daje nadzieję na zastąpienia krzemowej elektroniki mniejszymi i szybszymi materiałami kwantowymi. Obecnie procesory pracują z częstotliwością liczoną w gigahercach. Dzięki pracom uczonych z Northeastern, w przyszłości mogą być to teraherce.
Opisana na łamach Nature Physics technika „termicznego chłodzenia” (thermal quenching) polega przełączaniu materiału pomiędzy izolatorem a przewodnikiem za pomocą kontrolowanego podgrzewania i schładzania. Współautor odkrycia, profesor Gregory Fiete porównuje tę metodę do przełączania bramek w tranzystorze. Każdy, kto kiedykolwiek używał komputera, doszedł w pewnym momencie do punktu, w którym chciał, by komputer działał szybciej. Nie ma nic szybszego niż światło, a my używamy światła do kontrolowania właściwości materiałów z największą prędkością, jaką dopuszcza fizyka, dodaje uczony.
Naukowcy w temperaturze bliskiej temperaturze pokojowej oświetlali materiał kwantowy 1T-TaS2 uzyskując „ukryty stan metaliczny”, który dotychczas był stabilny w temperaturach kriogenicznych, poniżej -150 stopni Celsjusza. Teraz osiągnięto ten stan w znacznie bardziej praktycznych temperaturach, sięgających -60 stopni C, a materiał utrzymywał go przez wiele miesięcy. To daje nadzieję na stworzenie podzespołów składających się z jednego materiału, który w zależności od potrzeb może być przewodnikiem lub izolatorem.
Źródło: Dynamic phase transition in 1T-TaS2 via a thermal quench, https://www.nature.com/articles/s41567-025-02938-1
« powrót do artykułu -
przez KopalniaWiedzy.pl
Orbitalny moment pędu (OAM) elektronu uważany jest za mniej interesującą jego właściwość, gdyż w ciałach stałych zazwyczaj ulega on osłabieniu w wyniku interakcji z otaczającym elektron materiałem. Naukowcy z Centrum Badawczego Jülich (Forschungszentrum Jülich) wykazali właśnie, że w niektórych kryształach nie tylko zostaje on zachowany, ale można go też kontrolować. Jest to możliwe dzięki chiralności struktury krystalicznej. A odkrycie może doprowadzić do stworzenia nowej klasy urządzeń elektronicznych o wyjątkowej odporności na zakłócenia i dużej efektywności energetycznej.
Główną właściwością elektronu wykorzystywaną w klasycznej elektronice jest jego ładunek elektryczny. Nowoczesne technologie – jak technologie kwantowe czy spintronika – korzystają ze spinu elektronu. Jak jednak wynika z badań uczonych z Jülich, przyszłością elektroniki może być też orbitalny moment pędu, który opisuje, w jaki sposób elektron porusza się w atomie. W ten sposób może narodzić się orbitronika, która uzupełni i poszerzy możliwości, jakie dają nam elektronika i spintronika.
Przez dekady spin był uznawany za kluczowy parametr nowych technologii. Jednak orbitalny moment pędu również ma wielki potencjał jako nośnik informacji i jest przy tym znacznie bardziej stabilny, wyjaśnia doktor Christian Tusche z Instututu Petera Grünberga w Centrum Badawczym Jülich.
Jak już wspomnieliśmy, OAM jest rzadko obserwowany w kryształach, gdyż jest zwykle w nich tłumiony. Jednak naukowcy z Niemiec, we współpracy z kolegami z Tajwanu, USA, Włoch i Japonii wykazali właśnie, że w materiałach chiralnych, jak badany przez nich monokrzemek kobaltu (CoSi), sytuacja jest inna. Nasze badani pokazują, że struktura takiego kryształu bezpośrednio wpływa na moment pędu elektronu w sposób, który możemy bezpośrednio mierzyć. To otwiera nowe możliwości w dziedzinie badań materiałowych i przetwarzania informacji, dodaje fizyk eksperymentalny doktor Ying-Jiun Chen.
W przyszłości informacja może być przechowywana i przekazywane nie tylko poprzez ładunek i spin elektronu, ale również przez kierunek i orientację jego orbitalnego momentu pędu. Użycie OAM jako nośnika informacji wydaje się przekonujące. Można też będzie wykorzystać kołowo spolaryzowane światło do selektywnego wpływania na chiralność kryształów i uzyskania w ten sposób kontrolowanego światłem niemechanicznego przełącznika, alternatywy dla tranzystora. Co więcej połączenie OAM i spinu może pozwolić na zintegrowanie orbitroniki i spintroniki w hybrydowych maszynach kwantowych, stwierdza profesor Claus Michael Schneider, dyrektor Instytutu Petera Grünberga.
Źródło: Orbital Topology of Chiral Crystals for Orbitronics
« powrót do artykułu -
przez KopalniaWiedzy.pl
Budowa własnego PC pozwala wydobyć maksimum możliwości z dostępnych podzespołów. Na czym jednak powinieneś skupiać się w pierwszej kolejności, jeśli potrzebujesz komputera zarówno do pracy, jak i do grania? Oto pigułka wiedzy, która rozwieje twoje wątpliwości!
Sprzęt do pracy i gier – czy da się połączyć te obie rzeczy? Budowa własnego komputera może być pewnym wyzwaniem dla osób bez większego doświadczenia. Stworzenie sprzętu z zakupionych przez siebie podzespołów pozwala jednak na kontrolowanie każdego aspektu – od procesora, przez chłodzenie po pastę termoprzewodzącą. W taki sposób możesz więc nie tylko zaoszczędzić pieniądze, ale również wykrzesać jeszcze więcej z każdego elementu.
Oczywiście produkty, z których będzie składał się twój komputer, zależą od twoich potrzeb. Niektórzy nie potrzebują zabójczo szybkich maszyn, skupiając się na przeglądaniu Internetu czy rozmowie z bliskimi. Na drugim biegunie są gracze, którzy marzą o płynnej rozgrywce i najwyższym poziomie grafiki.
Istnieją jednak użytkownicy, którzy potrzebują niezwykle wszechstronnego urządzenia. Mowa tu na przykład o osobach, które pracują zdalnie i z tego względu rozglądają się za komputerem gotowym zarówno do pisania, montażu filmów czy obróbki zdjęć, jak i do rozrywki. Na szczęście te dwa światy idą ze sobą w parze i w większości przypadków ich potrzeby mocno się ze sobą pokrywają.
Komputer do pracy – na jakich elementach powinieneś się skupić? Praca zdalna staje się coraz popularniejsza, lecz może ona przyjmować naprawdę wiele oblicz. Trudno jest więc znaleźć komputer, który będzie odpowiadać potrzebom każdego pracownika. Niektórzy zresztą nie potrzebują wystrzałowych osiągów, z których i tak nie skorzystają. Wszystko zależy więc tak naprawdę od wykonywanego zawodu.
Osoby zajmujące się pracą z tekstem przede wszystkim powinny skupić się na dużej ilości pamięci operacyjnej RAM. Dzięki temu nawet kilkanaście otwartych kart w przeglądarce nie spowolnią działania. Tym samym warto również postawić na mocny procesor, który pozwoli podtrzymać wielozadaniowość, nawet w przypadku korzystania z dwóch monitorów.
Karta graficzna w tym przypadku schodzi na dalszy plan, czego zdecydowanie nie można powiedzieć na przykład o obróbce zdjęć czy montażu filmów. GPU jest kluczem do szybkiego działania programów i przetwarzania samych plików w edytorach. Tu zresztą również konieczny jest wydajny procesor, który udźwignie na sobie niezwykle wymagające zadanie w postaci renderów, czyli kompilowania ujęć filmowych w jeden duży plik.
Grafika, stabilność, moc – kluczowe elementy dobrego PC do gier Gracze także powinni skupiać się na trzech najważniejszych elementach wspomnianych wyżej: procesorze, pamięci RAM oraz karcie graficznej. W tym ostatnim przypadku warto postawić na dedykowaną odmianę, gotową na najnowsze tytuły. Ciekawą propozycją dla osób szukających topowych rozwiązań jest nowa karta graficzna NVIDIA GeForce RTX 5090, którą możesz sprawdzić na przykład na stronie https://www.morele.net/karta-graficzna-msi-geforce-rtx-5090-ventus-3x-oc-32gb-gddr7-14471822/.
Jeśli budujesz komputer od zera, pamiętaj również o wytrzymałej płycie głównej czy mocnym zasilaczu, dzięki któremu wszystkie podzespoły będą w stanie działać na maksymalnych obrotach. Stabilność w grach online zapewni odpowiednia karta sieciowa, a długą żywotność poszczególnych elementów możesz zapewnić między innymi dzięki wydajnemu chłodzeniu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Czysta woda jest izolatorem. Przewodzi prąd, o ile zawiera rozpuszczone sole. Jednak nawet wtedy jest słabym przewodnikiem, wielokrotnie słabszym niż metale. Aby uczynić wodę równie dobrym przewodnikiem co np. miedź, należy poddać ją olbrzymiemu ciśnieniu 50 Mbar. Takiemu, jakie planuje we wnętrzach dużych planet. Obecnie jednak nie jesteśmy w stanie uzyskać na Ziemi takiego ciśnienia.
Naukowcy z grupy Pavla Jungwirtha z Instytutu Chemii Organicznej i Biochemii Czeskiej Akademii Nauk są pierwszymi, którzy uzyskali metaliczny roztwór wodny bez konieczności używania ekstremalnie wysokiego ciśnienia. Czescy naukowcy, bazując na swoich wcześniejszych badaniach nad zachowaniem metali alkalicznych w wodzie i amoniaku, postanowili uzyskać pasmo przewodzące w wodzie nie poprzez kompresowanie molekuł wody, ale przez solwatację w wodzie elektronów uwolnionych z metali alkalicznych. Musieli jednak przy tym pokonać poważny problem – przy kontakcie metali alkalicznych z wodą dochodzi do bardzo silnej eksplozji.
Wrzucanie sodu do wody to jedne z najpopularniejszych wideo na YouTube pokazujących szkolne eksperymenty. Jak wiemy, gdy do wody wrzucimy sód, nie uzyskamy metalicznej wody, a silną eksplozję. Aby sobie z tym poradzić zastosowaliśmy inną metodę. Zamiast dodawać alkaliczny metal do wody, dodaliśmy wodę do metalu, wyjaśnia Jungwirth.
Naukowcy wykorzystali komorę próżniową, w której do kropli stopu sodowo-potasowego, dodali nieco pary wodnej. Para zaczęła skraplać się na powierzchni metalu. Elektrony, uwolnione z metalu alkalicznego rozpowszechniały się na powierzchni wody szybciej, niż przebiega reakcja prowadząca do eksplozji. Elektronów było na tyle dużo, że powstało pasmo przewodzące, prowadzące do pojawienia się metalicznego roztworu wodnego. Obok elektronów zawierał on kationy alkaliczne, wodór i wodorotlenek.
Stworzyliśmy cienką warstwę metalicznego roztworu wodnego o złotym kolorze. Istniała ona przez kilkanaście sekund, dzięki czemu nie tylko mogliśmy ją zobaczyć, ale również zbadać za pomocą spektrometrów. Wstępne potwierdzenie istnienia takiej warstwy uzyskaliśmy za pomocą naszych przyrządów w niewielkim laboratorium w prace. Później potwierdziliśmy istnienie metalicznej wody metodą spektroskopii fotoelektronów w zakresie promieniowania X w synchrotronie w Berlinie, dodaje Jungwirth.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.