Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Radioligand rzuca światło na tworzenie się blaszek amyloidowych u chorych na alzheimera

Rekomendowane odpowiedzi

Nowy radioligand dla pozytonowej tomografii emisyjnej (PET) okazał się skuteczny w obrazowaniu aktywności mózgu powiązanej z formowaniem się blaszek amyloidowych u osób z zaburzeniami poznawczymi i chorobą Alzheimera. Badania, opisane na łamach Molecular Psychiatry, wykazały, że ligand pozwala bezpośrednio obrazować to, co dzieje się podczas tworzenia się blaszek.

Naukowcy z King's College London, Imperial College London, GlaxoSmithKline i University of Manchester przyjrzeli się ligandowi 11C-BU99008, który umożliwia selektywne obrazowanie reaktywności astrocytów in vivo. Na potrzeby badań nad chorobą Alzheimera przeprowadzono badania PET u 11 starszych osób z zaburzeniami poznawczymi oraz 9 zdrowych równolatków. Reaktywność astrocytów to zbyt duża proliferacja astrocytów spowodowana uszkodzeniami neuronów. Dotychczasowe badania sugerują, że to właśnie ten proces może poprzedzać patologiczne zmiany w mózgach osób cierpiących na chorobę Alzheimera, takie jak formowanie się blaszek amyloidowych i splątków neurofibrylarnych.

Sądzimy, że 11C-BU99008 może być przydatny przy ocenie reaktywności astrocytów in vivo w przebiegu choroby Alzheimera i innych chorób neurodegeneracyjnych związanych z wiekiem, stwierdził Paul Edison z Imperial College London. Edison wraz z kolegami bada wspomniany radioligand od czasu jego zsyntetyzowania w 2012 roku. Teraz przeprowadzili pierwsze badania, których celem było sprawdzenie, czy u starszych osób z zaburzeniami poznawczymi absorpcja 11C-BU99008 jest wyższa niż u zdrowych rówieśników.

Badania wykazały, że do zwiększonej absorpcji ligandu doszło u 8 z 11 pacjentów ze zwiększoną liczbą blaszek amyloidowych. Zjawisko takie zaobserwowano przede wszystkim w płatach czołowym, skroniowym i potylicznym. To dowód, że 11C-BU99008 może mierzyć reaktywność astrocytów u ludzi ze związanymi z wiekiem zaburzeniami poznawczymi i chorobą Alzheimera. To jednocześnie potwierdzenie, że zwiększona reaktywność astrocytów ma przede wszystkim miejsce w tych regionach mózgu, w którym występuje nagromadzenie blaszek amyloidowych, napisali naukowcy.

Radioligand ten może więc być używany do dalszych badań nad chorobą Alzheimera, które pozwolą lepiej określić związek pomiędzy reaktywnością astrocytów a patologiami mózgu oraz sprawdzić, jak różne metody leczenia wpływają na poziom reaktywności astrocytów.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Zaledwie trzy zastrzyki z nanocząstek wystarczyły, by u myszy z chorobą Alzheimera doszło do zaskakującej pozytywnej poprawy. Naukowcy z Uniwersytetu w Syczuanie, Katalońskiego Instytutu Bioinżynierii (IBEC) i University College London zastosowali podejście polegające na wzięciu na cel naczyń krwionośnych, a nie neuronów czy innych komórek mózgu. Ze szczegółami ich badań można zapoznać się na łamach Signal Transduction and Targeted Therapy.
      Zastosowane leczenie przywróciło normalne funkcjonowanie bariery krew-mózg, co skutkowało odwróceniem skutków alzheimera w mysim modelu choroby. Bariera ta chroni mózg przed kontaktem ze szkodliwymi substancjami i mikroorganizmami. W przebiegu choroby Alzheimera taką główną szkodliwą substancją są białka beta-amyloidu (Aβ), tworzące blaszki amyloidowe, uniemożliwiające prawidłowe funkcjonowanie neuronom.
      Junyang Chen, badacz ze Szpitala Wschodniochińskiego na Uniwersytecie w Syczuanie, a obecnie doktorant na University College London poinformował, że już po 1. wstrzyknięciu nanocząstek zaobserwowano spadek ilości Aβ w mózgu o 50–60 procent. Jednak najbardziej uderzający był wpływ leczenia na myszy. Zwierzęta były genetycznie zmodyfikowane tak, by rozwinęła się u nich choroba Alzheimera. Podczas jednego z eksperymentów 12-miesięczna mysz (odpowiednik 60-letniego człowieka) otrzymała nanocząstki, a po 6 miesiącach zbadano, jak się zachowuje. Okazało się, że 18-miesięczne zwierzę (odpowiedni 90-letniego człowieka) funkcjonowała tak, jak jej zdrowe rówieśniczki.
      Długoterminowy wpływ naszej terapii bierze się z odtworzenia sieci naczyń krwionośnych mózgu. Uważamy, że działa to kaskadowo: gdy w mózgu akumuluje się toksyczny Aβ, choroba postępuje. Gdy jednak sieć naczyń krwionośnych zostanie przywrócona do prawidłowego stanu, dochodzi do wyczyszczenia mózgu z Aβ i innych szkodliwych substancji, dzięki czemu cały układ odzyskuje równowagę, mówi profesor Giuseppe Battaglia z IBEC.
      Jednym z głównych problemów w chorobie Alzheimera jest zaburzenie prawidłowego funkcjonowania mechanizmów oczyszczających mózg ze szkodliwych substancji. Rolę strażnika utrzymującego odpowiedni poziom Aβ w mózgu pełni proteina LRP1. Rozpoznaje ona beta-amyloid, łączy się z nim i przemieszcza przez barierę krew-mózg do krwioobiegu, gdzie całość zostaje usunięta. Jednak gdy LRP1 połączy się z Aβ zbyt ściśle lub zbyt luźno, transport zostaje zaburzony i beta-amyloid nie jest usuwany.
      Przygotowane przez naukowców nanocząstki same działają jak leki, a nie jak nośniki substancji leczniczych. Mają precyzyjnie kontrolowane rozmiary i wyposażone są w określoną liczbę ligand, przez co w specyficzny sposób wchodzą w interakcje z receptorami komórkowymi. Pozwala to na przywrócenie prawidłowego funkcjonowania układu krwionośnego oraz oczyszczenie mózgu z Aβ.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zaledwie trzy zastrzyki z nanocząstek wystarczyły, by u myszy z chorobą Alzheimera doszło do zaskakującej pozytywnej poprawy. Naukowcy z Uniwersytetu w Syczuanie, Katalońskiego Instytutu Bioinżynierii (IBEC) i University College London zastosowali podejście polegające na wzięciu na cel naczyń krwionośnych, a nie neuronów czy innych komórek mózgu. Ze szczegółami ich badań można zapoznać się na łamach Signal Transduction and Targeted Therapy.
      Zastosowane leczenie przywróciło normalne funkcjonowanie bariery krew-mózg, co skutkowało odwróceniem skutków alzheimera w mysim modelu choroby. Bariera ta chroni mózg przed kontaktem ze szkodliwymi substancjami i mikroorganizmami. W przebiegu choroby Alzheimera taką główną szkodliwą substancją są białka beta-amyloidu (Aβ), tworzące blaszki amyloidowe, uniemożliwiające prawidłowe funkcjonowanie neuronom.
      Junyang Chen, badacz ze Szpitala Wschodniochińskiego na Uniwersytecie w Syczuanie, a obecnie doktorant na University College London poinformował, że już po 1. wstrzyknięciu nanocząstek zaobserwowano spadek ilości Aβ w mózgu o 50–60 procent. Jednak najbardziej uderzający był wpływ leczenia na myszy. Zwierzęta były genetycznie zmodyfikowane tak, by rozwinęła się u nich choroba Alzheimera. Podczas jednego z eksperymentów 12-miesięczna mysz (odpowiednik 60-letniego człowieka) otrzymała nanocząstki, a po 6 miesiącach zbadano, jak się zachowuje. Okazało się, że 18-miesięczne zwierzę (odpowiedni 90-letniego człowieka) funkcjonowała tak, jak jej zdrowe rówieśniczki.
      Długoterminowy wpływ naszej terapii bierze się z odtworzenia sieci naczyń krwionośnych mózgu. Uważamy, że działa to kaskadowo: gdy w mózgu akumuluje się toksyczny Aβ, choroba postępuje. Gdy jednak sieć naczyń krwionośnych zostanie przywrócona do prawidłowego stanu, dochodzi do wyczyszczenia mózgu z Aβ i innych szkodliwych substancji, dzięki czemu cały układ odzyskuje równowagę, mówi profesor Giuseppe Battaglia z IBEC.
      Jednym z głównych problemów w chorobie Alzheimera jest zaburzenie prawidłowego funkcjonowania mechanizmów oczyszczających mózg ze szkodliwych substancji. Rolę strażnika utrzymującego odpowiedni poziom Aβ w mózgu pełni proteina LRP1. Rozpoznaje ona beta-amyloid, łączy się z nim i przemieszcza przez barierę krew-mózg do krwioobiegu, gdzie całość zostaje usunięta. Jednak gdy LRP1 połączy się z Aβ zbyt ściśle lub zbyt luźno, transport zostaje zaburzony i beta-amyloid nie jest usuwany.
      Przygotowane przez naukowców nanocząstki same działają jak leki, a nie jak nośniki substancji leczniczych. Mają precyzyjnie kontrolowane rozmiary i wyposażone są w określoną liczbę ligand, przez co w specyficzny sposób wchodzą w interakcje z receptorami komórkowymi. Pozwala to na przywrócenie prawidłowego funkcjonowania układu krwionośnego oraz oczyszczenie mózgu z Aβ.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zaledwie trzy zastrzyki z nanocząstek wystarczyły, by u myszy z chorobą Alzheimera doszło do zaskakującej pozytywnej poprawy. Naukowcy z Uniwersytetu w Syczuanie, Katalońskiego Instytutu Bioinżynierii (IBEC) i University College London zastosowali podejście polegające na wzięciu na cel naczyń krwionośnych, a nie neuronów czy innych komórek mózgu. Ze szczegółami ich badań można zapoznać się na łamach Signal Transduction and Targeted Therapy.
      Zastosowane leczenie przywróciło normalne funkcjonowanie bariery krew-mózg, co skutkowało odwróceniem skutków alzheimera w mysim modelu choroby. Bariera ta chroni mózg przed kontaktem ze szkodliwymi substancjami i mikroorganizmami. W przebiegu choroby Alzheimera taką główną szkodliwą substancją są białka beta-amyloidu (Aβ), tworzące blaszki amyloidowe, uniemożliwiające prawidłowe funkcjonowanie neuronom.
      Junyang Chen, badacz ze Szpitala Wschodniochińskiego na Uniwersytecie w Syczuanie, a obecnie doktorant na University College London poinformował, że już po 1. wstrzyknięciu nanocząstek zaobserwowano spadek ilości Aβ w mózgu o 50–60 procent. Jednak najbardziej uderzający był wpływ leczenia na myszy. Zwierzęta były genetycznie zmodyfikowane tak, by rozwinęła się u nich choroba Alzheimera. Podczas jednego z eksperymentów 12-miesięczna mysz (odpowiednik 60-letniego człowieka) otrzymała nanocząstki, a po 6 miesiącach zbadano, jak się zachowuje. Okazało się, że 18-miesięczne zwierzę (odpowiedni 90-letniego człowieka) funkcjonowała tak, jak jej zdrowe rówieśniczki.
      Długoterminowy wpływ naszej terapii bierze się z odtworzenia sieci naczyń krwionośnych mózgu. Uważamy, że działa to kaskadowo: gdy w mózgu akumuluje się toksyczny Aβ, choroba postępuje. Gdy jednak sieć naczyń krwionośnych zostanie przywrócona do prawidłowego stanu, dochodzi do wyczyszczenia mózgu z Aβ i innych szkodliwych substancji, dzięki czemu cały układ odzyskuje równowagę, mówi profesor Giuseppe Battaglia z IBEC.
      Jednym z głównych problemów w chorobie Alzheimera jest zaburzenie prawidłowego funkcjonowania mechanizmów oczyszczających mózg ze szkodliwych substancji. Rolę strażnika utrzymującego odpowiedni poziom Aβ w mózgu pełni proteina LRP1. Rozpoznaje ona beta-amyloid, łączy się z nim i przemieszcza przez barierę krew-mózg do krwioobiegu, gdzie całość zostaje usunięta. Jednak gdy LRP1 połączy się z Aβ zbyt ściśle lub zbyt luźno, transport zostaje zaburzony i beta-amyloid nie jest usuwany.
      Przygotowane przez naukowców nanocząstki same działają jak leki, a nie jak nośniki substancji leczniczych. Mają precyzyjnie kontrolowane rozmiary i wyposażone są w określoną liczbę ligand, przez co w specyficzny sposób wchodzą w interakcje z receptorami komórkowymi. Pozwala to na przywrócenie prawidłowego funkcjonowania układu krwionośnego oraz oczyszczenie mózgu z Aβ.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zaledwie trzy zastrzyki z nanocząstek wystarczyły, by u myszy z chorobą Alzheimera doszło do zaskakującej pozytywnej poprawy. Naukowcy z Uniwersytetu w Syczuanie, Katalońskiego Instytutu Bioinżynierii (IBEC) i University College London zastosowali podejście polegające na wzięciu na cel naczyń krwionośnych, a nie neuronów czy innych komórek mózgu. Ze szczegółami ich badań można zapoznać się na łamach Signal Transduction and Targeted Therapy.
      Zastosowane leczenie przywróciło normalne funkcjonowanie bariery krew-mózg, co skutkowało odwróceniem skutków alzheimera w mysim modelu choroby. Bariera ta chroni mózg przed kontaktem ze szkodliwymi substancjami i mikroorganizmami. W przebiegu choroby Alzheimera taką główną szkodliwą substancją są białka beta-amyloidu (Aβ), tworzące blaszki amyloidowe, uniemożliwiające prawidłowe funkcjonowanie neuronom.
      Junyang Chen, badacz ze Szpitala Wschodniochińskiego na Uniwersytecie w Syczuanie, a obecnie doktorant na University College London poinformował, że już po 1. wstrzyknięciu nanocząstek zaobserwowano spadek ilości Aβ w mózgu o 50–60 procent. Jednak najbardziej uderzający był wpływ leczenia na myszy. Zwierzęta były genetycznie zmodyfikowane tak, by rozwinęła się u nich choroba Alzheimera. Podczas jednego z eksperymentów 12-miesięczna mysz (odpowiednik 60-letniego człowieka) otrzymała nanocząstki, a po 6 miesiącach zbadano, jak się zachowuje. Okazało się, że 18-miesięczne zwierzę (odpowiedni 90-letniego człowieka) funkcjonowała tak, jak jej zdrowe rówieśniczki.
      Długoterminowy wpływ naszej terapii bierze się z odtworzenia sieci naczyń krwionośnych mózgu. Uważamy, że działa to kaskadowo: gdy w mózgu akumuluje się toksyczny Aβ, choroba postępuje. Gdy jednak sieć naczyń krwionośnych zostanie przywrócona do prawidłowego stanu, dochodzi do wyczyszczenia mózgu z Aβ i innych szkodliwych substancji, dzięki czemu cały układ odzyskuje równowagę, mówi profesor Giuseppe Battaglia z IBEC.
      Jednym z głównych problemów w chorobie Alzheimera jest zaburzenie prawidłowego funkcjonowania mechanizmów oczyszczających mózg ze szkodliwych substancji. Rolę strażnika utrzymującego odpowiedni poziom Aβ w mózgu pełni proteina LRP1. Rozpoznaje ona beta-amyloid, łączy się z nim i przemieszcza przez barierę krew-mózg do krwioobiegu, gdzie całość zostaje usunięta. Jednak gdy LRP1 połączy się z Aβ zbyt ściśle lub zbyt luźno, transport zostaje zaburzony i beta-amyloid nie jest usuwany.
      Przygotowane przez naukowców nanocząstki same działają jak leki, a nie jak nośniki substancji leczniczych. Mają precyzyjnie kontrolowane rozmiary i wyposażone są w określoną liczbę ligand, przez co w specyficzny sposób wchodzą w interakcje z receptorami komórkowymi. Pozwala to na przywrócenie prawidłowego funkcjonowania układu krwionośnego oraz oczyszczenie mózgu z Aβ.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zaledwie trzy zastrzyki z nanocząstek wystarczyły, by u myszy z chorobą Alzheimera doszło do zaskakującej pozytywnej poprawy. Naukowcy z Uniwersytetu w Syczuanie, Katalońskiego Instytutu Bioinżynierii (IBEC) i University College London zastosowali podejście polegające na wzięciu na cel naczyń krwionośnych, a nie neuronów czy innych komórek mózgu. Ze szczegółami ich badań można zapoznać się na łamach Signal Transduction and Targeted Therapy.
      Zastosowane leczenie przywróciło normalne funkcjonowanie bariery krew-mózg, co skutkowało odwróceniem skutków alzheimera w mysim modelu choroby. Bariera ta chroni mózg przed kontaktem ze szkodliwymi substancjami i mikroorganizmami. W przebiegu choroby Alzheimera taką główną szkodliwą substancją są białka beta-amyloidu (Aβ), tworzące blaszki amyloidowe, uniemożliwiające prawidłowe funkcjonowanie neuronom.
      Junyang Chen, badacz ze Szpitala Wschodniochińskiego na Uniwersytecie w Syczuanie, a obecnie doktorant na University College London poinformował, że już po 1. wstrzyknięciu nanocząstek zaobserwowano spadek ilości Aβ w mózgu o 50–60 procent. Jednak najbardziej uderzający był wpływ leczenia na myszy. Zwierzęta były genetycznie zmodyfikowane tak, by rozwinęła się u nich choroba Alzheimera. Podczas jednego z eksperymentów 12-miesięczna mysz (odpowiednik 60-letniego człowieka) otrzymała nanocząstki, a po 6 miesiącach zbadano, jak się zachowuje. Okazało się, że 18-miesięczne zwierzę (odpowiedni 90-letniego człowieka) funkcjonowała tak, jak jej zdrowe rówieśniczki.
      Długoterminowy wpływ naszej terapii bierze się z odtworzenia sieci naczyń krwionośnych mózgu. Uważamy, że działa to kaskadowo: gdy w mózgu akumuluje się toksyczny Aβ, choroba postępuje. Gdy jednak sieć naczyń krwionośnych zostanie przywrócona do prawidłowego stanu, dochodzi do wyczyszczenia mózgu z Aβ i innych szkodliwych substancji, dzięki czemu cały układ odzyskuje równowagę, mówi profesor Giuseppe Battaglia z IBEC.
      Jednym z głównych problemów w chorobie Alzheimera jest zaburzenie prawidłowego funkcjonowania mechanizmów oczyszczających mózg ze szkodliwych substancji. Rolę strażnika utrzymującego odpowiedni poziom Aβ w mózgu pełni proteina LRP1. Rozpoznaje ona beta-amyloid, łączy się z nim i przemieszcza przez barierę krew-mózg do krwioobiegu, gdzie całość zostaje usunięta. Jednak gdy LRP1 połączy się z Aβ zbyt ściśle lub zbyt luźno, transport zostaje zaburzony i beta-amyloid nie jest usuwany.
      Przygotowane przez naukowców nanocząstki same działają jak leki, a nie jak nośniki substancji leczniczych. Mają precyzyjnie kontrolowane rozmiary i wyposażone są w określoną liczbę ligand, przez co w specyficzny sposób wchodzą w interakcje z receptorami komórkowymi. Pozwala to na przywrócenie prawidłowego funkcjonowania układu krwionośnego oraz oczyszczenie mózgu z Aβ.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...