Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Pierwsze obserwacje „mieszanych” par złożonych z czarnej dziury i gwiazdy neutronowej

Rekomendowane odpowiedzi

Konsorcja naukowe Virgo, LIGO i KAGRA ogłosiły pierwsze w historii odkrycie układów podwójnych składających się z czarnej dziury i gwiazdy neutronowej. Było to możliwe dzięki wykryciu w styczniu 2020 r.  sygnałów fal grawitacyjnych wyemitowanych przez dwa układy (nazwane od daty ich rejestracji GW200105 i GW200115) w których wirujące wokół siebie czarna dziura i gwiazda neutronowa połączyły się w jeden zwarty obiekt. Astronomowie już kilkadziesiąt lat temu przewidzieli istnienie takich układów, ale do tej pory nigdy nie zaobserwowano ich z całkowitą pewnością, ani za pomocą sygnałów elektromagnetycznych, ani obserwując fale grawitacyjne. Wyniki nowych obserwacji i ich astrofizyczne implikacje zostały opublikowane w The Astrophysical Journal Letters.

Od momentu pierwszej spektakularnej detekcji fal grawitacyjnych z koalescencji dwóch czarnych dziur, GW150914, za którą została przyznana nagroda Nobla w 2017, zarejestrowaliśmy sygnały z 50 układów podwójnych obiektów zwartych, ale były to wyłącznie pary łączących się czarnych dziur lub gwiazd neutronowych. Długo wyczekiwane odkrycie układów podwójnych gwiazdy neutronowej z czarną dziurą rzuca światło na narodziny, życie i śmierć gwiazd, jak również na otoczenie, w którym powstały – wyjaśnia prof. Dorota Rosińska

Te obserwacje pokazują, ze istnieją mieszane układy podwójne zawierające gwiazdy neutronowe i czarne dziury. Istnienie takich układów było przewidziane w wielu scenariuszach, w tym rozwijanych przez mnie wraz z prof. Belczynskim od ponad dwudziestu lat. Ta detekcja jest potwierdzeniem takich przewidywań – mówi prof. Tomasz Bulik

Sygnały fal grawitacyjnych zarejestrowane w styczniu 2020 r. zawierają cenne informacje o cechach fizycznych zaobserwowanych układów, takich jak ich odległości i masy składników, a także o mechanizmach fizycznych, które takie pary wygenerowały i doprowadziły do ich połączenia. Analiza danych wykazała, że czarna dziura i gwiazda neutronowa, które stworzyły GW200105, są odpowiednio około 8,9 i 1,9 razy masywniejsze od naszego Słońca, a ich połączenie miało miejsce około 900 milionów lat temu. W przypadku zdarzenia GW200115 naukowcy z konsorcjów Virgo i LIGO szacują, że dwa zwarte obiekty miały masy około 5,7 (czarna dziura) i 1,5 (gwiazda neutronowa) mas Słońca i połączyły się niemal miliard lat temu.

Prof. Rosińska: Spodziewaliśmy się, że podczas koalescencji gwiazdy neutronowej z czarną dziurą, gwiazda zostanie rozerwana przez siły pływowe, gdy znajdzie się dostatecznie blisko czarnej dziury, jednak duża różnica mas obiektów spowodowała, że prawdopodobnie gwiazda neutronowa została połknięta w całości przez czarną dziurę.

Ogłoszony wynik, wraz z dziesiątkami innych detekcji dokonanych do tej pory przez detektory Virgo i LIGO, pozwala po raz pierwszy na dokładną obserwację jednych z najbardziej gwałtownych i rzadkich zjawisk we Wszechświecie. Badamy proces ich tworzenia oraz miejsce ich narodzin.  Obserwacje koalescencji czarnej dziury i gwiazdy neutronowej, dają możliwość testowania fundamentalnych praw fizyki w ekstremalnych warunkach, których nigdy nie będziemy w stanie odtworzyć na Ziemi. Prof. Rosińska: Mamy nadzieję, że przyszłym obserwacjom łączenia się gwiazdy neutronowej z czarną dziurą może towarzyszyć wykrycie wytworzonego w tym procesie promieniowania elektromagnetycznego, co da nam wgląd w proces rozrywania pływowego gwiazdy neutronowej przez czarną dziurę. Może to dostarczyć informacji o ekstremalnie gęstej materii, z której składają się gwiazdy neutronowe.

Obserwacja dwóch układów gwiazda neutronowa-czarna dziura pokazuje, że koalescencji tego typu obiektów może być od 5 do 15 rocznie w objętości o promieniu miliarda lat świetlnych. To szacowane tempo łączenia się NSBH można wytłumaczyć zarówno izolowaną ewolucją układów podwójnych jak i dynamicznymi oddziaływaniami w gęstych gromadach gwiazd, ale dostępne do tej pory dane nie pozwalają nam na wskazanie bardziej prawdopodobnego scenariusza.

W pracach uczestniczyli naukowcy z Obserwatorium Astronomicznego UW: prof. Tomasz Bulik, prof. Dorota Rosińska, mgr Małgorzata Curyło, mgr Neha Singh, dr Przemysław Figura, dr Bartosz Idźkowski, mgr Paweł Szewczyk.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W jednym z laboratoriów na Imperial College London odtworzono wirujący dysk plazmy, z tych, jakie otaczają czarne dziury i tworzące się gwiazdy. Eksperyment pozwala lepiej modelować procesy, zachodzące w takich dyskach, a naukowcy mają nadzieję, że dzięki temu dowiedzą się, jak rosną czarne dziury i powstają gwiazdy.
      Gdy materia zbliża się do czarnej dziury, jest rozgrzewana i staje się plazmą, czwartym stanem materii składającym się z naładowanych jonów i wolnych elektronów. Zaczyna też się obracać, tworząc dysk akrecyjny. W wyniku obrotu powstają siły odśrodkowe odrzucające plazmę na zewnątrz, jednak siły te równoważy grawitacja czarnej dziury.
      Naukowcy chcą poznać odpowiedź na pytanie, w jaki sposób czarna dziura rośnie, skoro materia – w formie plazmy – pozostaje na jej orbicie. Najbardziej rozpowszechniona teoria mówi, że niestabilności w polu magnetycznym plazmy prowadzą do pojawienia się tarcia, plazma traci energię i wpada do czarnej dziury.
      Dotychczas mechanizm ten badano za pomocą ciekłych wirujących metali. Za ich pomocą sprawdzano, co dzieje się, gdy pojawi się pole magnetyczne. Jednak metale te zamknięte są w rurach, co nie oddaje w pełni swobodnie poruszającej się plazmy.
      Doktor Vincente Valenzuela-Villaseca i jego zespół wykorzystali urządzenie Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE) do stworzenia wirującego dysku plazmy. Za jego pomocą przyspieszyli osiem strumieni plazmy i doprowadzili do ich zderzenia, w wyniku czego powstała obracająca się kolumna plazmy. Odkryli, że im bliżej środka, tym plazma porusza się szybciej. To ważna cecha dysków akrecyjnych.
      MAGPIE generuje krótkie impulsy plazmy, przez co w utworzonym dysku dochodziło tylko do jednego obrotu. Jednak liczbę obrotów będzie można zwiększyć wydłużając czas trwania impulsów plazmy. Przy dłużej istniejących dyskach możliwe będzie też zastosowanie pól magnetycznych i zbadanie ich wpływu na plazmę. Zaczynamy badać dyski akrecyjne w nowy sposób, zarówno za pomocą Teleskopu Horyzontu Zdarzeń, jak i naszego eksperymentu. Pozwoli nam to przetestować różne teorie i sprawdzić, czy zgadzają się one z obserwacjami, mówi Valenzuela-Villaseca.
      Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Supermasywna czarna dziura, pędząca z prędkością 1 650 000 kilometrów na godzinę, przemieszcza się przez przestrzeń międzygalaktyczną, ciągnąc za sobą gigantyczny ogon gwiazd i materii gwiazdotwórczej. Niezwykły, jedyny taki znany nam obiekt, zauważył przypadkiem Teleskop Kosmiczny Hubble'a.
      Za czarną dziurą o masie 20 milionów mas Słońca podąża ogon z nowo narodzonych gwiazd. Ma on długość 200 000 lat świetlnych, jest więc dwukrotnie dłuższy niż średnica Drogi Mlecznej i rozciąga się od czarnej dziury, aż po jej galaktykę macierzystą, z której się wydostała. W ogonie musi znajdować się olbrzymia liczba nowo powstałych gwiazd, gdyż całość ma aż połowę jasności swojej galaktyki macierzystej.
      Astronomowie nie są oczywiście w stanie dostrzec samej czarnej dziury, ale widzą skutki jej oddziaływania. Widzą zatem długi ogon gwiazd i materii gwiazdotwórczej, na którego jednym końcu znajduje się oddalona od nas o 7,5 miliarda lat świetlnych galaktyka RCP 28, a na drugim wyjątkowo jasno świecący obszar. Naukowcy przypuszczają, że obszar ten to albo dysk akrecyjny wokół czarnej dziury, albo też gaz, który został podgrzany do wysokich temperatur przez wdzierającą się w niego, pędzącą z olbrzymią prędkością czarną dziurę. Gaz na czele czarnej dziury jest podgrzewany przez falę uderzeniową generowaną przez czarną dziurę pędzącą z prędkością ponaddźwiękową, mówi Pieter van Dokkum z Yale University.
      To był całkowity przypadek. Przyglądałem się obrazom z Hubble'a i zobaczyłem niewielką smużkę. Pomyślałem, że to promieniowanie kosmiczne wywołało zaburzenia obrazu. Jednak, gdy wyeliminowaliśmy promieniowanie kosmiczne, smużka nadal nam była. I nie wyglądała jak coś, co wcześniej widzieliśmy, dodaje van Dokkum.
      Naukowcy postanowili się bliżej przyjrzeć tajemniczemu zjawisku i wykorzystali spektroskop z W. M. Keck Observatories na Hawajach. Zobaczyli jasną strukturę i po badaniach doszli do wniosku, że została ona utworzona przez supermasywną czarną dziurę, która wydobyła się ze swojej galaktyki.
      Zdaniem van Dokkuma i jego zespołu, wyrzucenie czarnej dziury to skutek licznych kolizji. Do pierwszej z nich doszło około 50 milionów lat temu, gdy połączyły się dwie galaktyki. Ich supermasywne czarne dziury utworzyły układ podwójny i zaczęły wirować wokół siebie. Po jakimś czasie doszło do zderzenia z kolejną galaktyką. Ta również zawierała supermasywną czarną dziurę. Utworzył się niestabilny układ trzech czarnych dziur. Około 39 milionów lat temu jedna z nich przejęła część pędu z dwóch pozostałych i została wyrzucona z galaktyki.
      Gdy pojedyncza czarna dziura odleciała w jedną stronę, dwie pozostałe krążące wokół siebie czarne dziury zostały odrzucone w drugą stronę. Po przeciwnej stronie galaktyki naukowcy zauważyli bowiem coś, co może być oddalającym się układem dwóch czarnych dziur, a w samym centrum galaktyki nie zauważono obecności żadnej czarnej dziury.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzięki teleskopowi Gemini North na Hawajach udało się wykryć najbliższą Ziemi czarną dziurę. Obiekt Gaia BH1 ma masę 10-krotnie większą od Słońca i znajduje się w odległości 480 parseków (ok. 1560 lat świetlnych) od Ziemi w Gwiazdozbiorze Wężownika.
      Dziurę odkryto dzięki temu, że krąży wokół niej żółty karzeł typu widmowego G o masie 0,93 mas Słońca i metaliczności podobnej do słonecznej. Jest to więc gwiazda tego samego typu, co Słońce. Weź Układ Słoneczny, wsadź czarną dziurę tam, gdzie jest Słońce, a Słońce tam, gdzie jest Ziemia i masz obraz tego układu, wyjaśnia główny autor badań Kareem El-Badry, astrofizyk z Center for Astrophysics | Harvard & Smithsonian i Instytutu Astronomii im. Maksa Plancka. Okres orbitalny gwiazdy wokół Gai BH1 wynosi aż 185,6 ziemskich dni, jest więc dłuższy niż jakikolwiek znany nam okres orbitalny w podobnym układzie.
      Wielokrotnie ogłaszano odkrycie podobnych systemów, jednak niemal wszystkie te stwierdzenia zostały z czasem obalone. Tutaj mamy pierwsze jednoznaczne odkrycie w naszej galaktyce gwiazdy typu słonecznego na szerokiej orbicie wokół czarnej dziury o masie gwiazdowej, dodaje El-Badry.
      Obecne modele astronomiczne nie wą w stanie wyjaśnić, w jaki sposób mógł powstać taki system. Przede wszystkim dlatego, że skoro mamy czarną dziurę o masie 10-krotnie większej od masy Słońca, to musiała ona powstać z gwiazdy o masie co najmniej 20-krotnie większej od masy Słońca. To oznacza, że mogła ona istnieć zaledwie przez kilka milionów lat. Jeśli zaś obie gwiazdy – czyli ta, która zamieniła się w czarną dziurę i ta, która wokół niej krąży – powstały w tym samym czasie, to bardziej masywna z gwiazd na tyle szybko powinna zmienić się w czerwonego olbrzyma, pochłaniając towarzyszącą gwiazdę, że towarzyszka nie zdążyłaby wyewoluować do etapu gwiazdy ciągu głównego podobnej do Słońca. Nie wiadomo, jak towarzyszka czarnej dziury przetrwała etap czerwonego olbrzyma drugiej z gwiazd. Modele teoretyczne, które zakładają taką możliwość, mówią, że gwiazda o masie Słońca powinna znajdować się na znacznie ciaśniejszej orbicie wokół czarnej dziury.
      To oznacza, że w naszym rozumieniu tworzenia się i ewolucji czarnych dziur w układach podwójnych znajdują się spore luki, co sugeruje, że istnienie niezbadana dotychczas populacja czarnych dziur w takich układach.
      Trzeba tutaj przypomnieć, że rok temu poinformowano, iż wokół czerwonego olbrzyma V723 Mon, w odległości 460 parseków (ok.1500 lat świetlnych) od Ziemi, krąży najbliższa nam czarna dziura. Po jakimś czasie okazało się, że w układzie tym nie ma czarnej dziury.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Hubble'a dokonał unikatowych pomiarów, z których wynika, że dżet wydobywający się z obiektu GW170817 porusza się z prędkością przekraczającą 99,97% prędkości światła. Wykryta w sierpniu 2017 roku fala grawitacyjna GW170817 była niezwykłym i jedynym dotychczas zarejestrowanym wydarzeniem swego rodzaju. Pochodziła ze zlania się dwóch gwiazd neutronowych i zabłyśnięcia kilonowej SSS17a, trwała wyjątkowo długo i była powiązana z emisją promieniowania gamma.
      Wydarzenie było tak niezwykłe, że zaczęło obserwować je kilkadziesiąt teleskopów z całego świata. Okazało się, że to pierwszy obiekt, w przypadku którego powiązano fale grawitacyjne z obecnością światła, a powstały w czasie rozbłysku dżet zawiera ilość energii porównywalną z ilością produkowaną przez wszystkie gwiazdy Drogi Mlecznej w ciągu roku. GW170817 zostało wykorzystane m.in. do potwierdzenia Ogólnej Teorii Względności. Wykrycie GW170817 było niezwykle ważnym momentem w rozwoju astronomii w dziedzinie czasu, która bada zmiany ciał niebieskich w czasie.
      Teleskop Hubble'a zaczął obserwować to wydarzenie już 2 dni po jego odkryciu. Gwiazdy neutronowe zapadły się w czarną dziurę, która zaczęła wciągać okoliczną materię. Utworzył się szybko obracający się dysk materii, z którego biegunów wydobywa się potężny dżet. Naukowcy od wielu lat analizują dane dostarczone przez Hubble'a i inne teleskopy obserwujące GW170817.
      Zespół pracujący pod kierunkiem Kunala P. Mooleya z California Institute of Technology połączył dane z Hubble'a z danym dostarczonymi przez grupę radioteleskopów. Dane radiowe zebrano 75 i 230 dni po eksplozji. Obliczenie prędkości dżetu wymagało wielomiesięcznych szczegółowych analiz, mówi Jay Anderson ze Space Telescope Science Institute.
      Początkowe pomiary Hubble'a wykazały, że dżet porusza się z pozorną prędkością wynoszącą 7-krotność prędkości światła. Późniejsze pomiary za pomocą radioteleskopów pokazały, że dżet zwolnił do pozornej 4-krotnej prędkości światła.
      Jako, że nic nie może poruszać się szybciej niż światło, tak duża prędkość dżetu jest złudzeniem. Ponieważ dżet porusza się w kierunku Ziemi niemal z prędkością światła, światło wyemitowane później ma do przebycia krótszą drogę niż to, wyemitowane wcześniej. Dżet goni własne światło. Przez to obserwatorowi wydaje się, że od emisji światła z dżetu minęło mniej czasu niż w rzeczywistości. To zaś powoduje przeszacowanie prędkości obiektu. Z naszych analiz wynika, że dżet w momencie pojawienia się poruszał się z prędkością co najmniej 99,97% prędkości światła, mówi Wenbin Lu z Uniwersytetu Kalifornijskiego w Los Angeles.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie z University of Berkeley poinformowali, że odkryta w 2017 roku gwiazda neutronowa jest nie tylko jednym z najszybciej obracających się pulsarów w Drodze Mlecznej. Pochłonęła ona niemal całą masę towarzyszącej jej gwiazdy, stając się najbardziej masywną ze wszystkich znanych nam gwiazd neutronowych.
      Pulsar PSR J0952-0607 obraca się 707 razy na sekundę, a jego masa wynosi aż 2,35 mas Słońca. Gdyby była nieco bardziej masywna, całkowicie by się zapadła, tworząc czarną dziurę Jej badania pozwolą na lepsze zrozumienie ekstremalnego środowiska tych niezwykle gęstych obiektów. Niewiele wiemy o tym, jak materia zachowuje się w tak gęstych miejscach, jak jądro atomu uranu. Gwiazda neutronowa przypomina takie wielkie jądro, mówi profesor Alex Filippenko.
      Gwiazdy neutronowe są tak gęste, że 1 cm3 ich materii waży około miliarda ton. Są więc najbardziej gęstymi obiektami we wszechświecie. Zaraz po czarnych dziurach. Tych jednych, ukrytych za horyzontem zdarzeń, nie jesteśmy w stanie badać.
      PSR J0952-0607 to tzw. „czarna wdowa”. To oczywiste odniesienie do pająków czarnych wdów, wśród których samica pożera po kopulacji znacznie mniejszego samca. Filippenko i profesor Roger W. Romani od ponad dekady badają systemy „czarnych wdów”, starając się określić górną granicę masy, jaką może osiągnąć pulsar.
      Dzięki połączeniu pomiarów z wielu systemów czarnych wdów, stwierdziliśmy, że gwiazda neutronowa może osiągnąć masę 2,35 ± 0,17 masy Słońca, stwierdza Romani. Jeśli zaś jest to granica limitu masy gwiazdy neutronowej, gwiazda taka zbudowana jest prawdopodobnie z mieszaniny neutronów oraz kwarków górnych i dolnych, ale nie z egzotycznej materii, takiej jak kwarki dziwne czy kaony. Taki limit wyklucza wiele proponowanych stanów materii, szczególnie egzotycznej materii we wnętrzu gwiazdy, dodaje Romani.
      Naukowcy są generalnie zgodni co do tego, że gwiazdy, których masa jądra przekracza 1,4 masy Słońca, zapadają się pod koniec życia, tworząc gęsty kompaktowy obiekt, w którego wnętrzu panuje tak wysokie ciśnienie, że wszystkie atomy tworzą mieszaninę neutronów i kwarków. Powstają w ten sposób gwiazdy neutronowe, które od początku istnienia obracają się. I mimo że w świetle widzialnym świecą zbyt słabo, byśmy mogli je dostrzec, emitują impulsy radiowe, promieniowania rentgenowskiego, a nawet promieniowania gamma, które omiatają Ziemię na podobieństwo latarni morskiej.
      Zwykłe pulsary obracają się z prędkością około 1 obrotu na sekundę. Zjawisko to łatwo wyjaśnić naturalnym obrotem gwiazdy z okresu, przed jej zapadnięciem się. Znamy jednak pulsary obracające się znacznie szybciej, nawet do 1000 razy na sekundę. To tak zwane pulsary milisekundowe. Tak szybki obrót trudno jest wytłumaczyć bez odwoływania się do materii z gwiazdy towarzyszącej, która je wchłaniania przez pulsar i napędza jego ruch.  Jednak w przypadku niektórych pulsarów milisekundowych nie potrafimy wykryć ich towarzysza. Jedno z wyjaśnień mówi, że już go nie ma, gdyż pulsar wchłonął całą jego materię.
      Naukowcy mówią, że gdy towarzysz gwiazdy neutronowej starzeje się i staje się czerwonym olbrzymem, pochodząca z niego materia opada na pulsar, który zaczyna się coraz szybciej obracać. Z obracającej się gwiazdy wydobywa się wiatr cząstek, który uderza w czerwonego olbrzyma i obdziera go z materii. Ten samonapędzający się proces może trwać do czasu, aż czerwony olbrzym skurczy się do wielkości planety, a nawet całkowicie zniknie. Tak właśnie ma dochodzić do pojawienia się samotnych pulsarów milisekundowych.
      Pulsar PSR J0952-0607 potwierdza tę hipotezę. Jego towarzyszem jest niewielka gwiazda, która właśnie traci materię i zbliża się do granicy masy planety, a z czasem może całkowicie zniknąć. Obecnie jej masa jest zaledwie 20-krotnie większa od masy Jowisza, ma więc masę 2% masy Słońca. Znajduje się w obrocie synchronicznym względem pulsara, czyli jest zwrócona do niego zawsze tą samą stroną. Przez to temperatura tej strony wynosi ok. 6000 stopni Celsjusza i sama gwiazda świeci na tyle mocno, że można ją dostrzec za pomocą teleskopu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...