Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Silnik detonacyjny HyperReact: tanie loty kosmiczne i samoloty pędzące 20 000 km/h
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Inżynierowie z NASA skonstruowali i przetestowali pierwszy pełnoskalowy silnik rakietowy z rotującą detonacją (RDRE – rotating detonation rocket engine). Tego typu napęd może być przyszłością lotów kosmicznych. Dzięki niemu bowiem rakiety będą lżejsze, mniej skomplikowane i zużyją mniej paliwa. Zaledwie trzy lata temu powstał matematyczny model takiego silnika oraz niewielki prototyp, co pozwoliło inżynierom na rozpoczęcie testów urządzenia.
Konwencjonalny silnik rakietowy uzyskuje ciąg dzięki spalaniu paliwa i wyrzucaniu go z tyłu. Silnik z rotującą detonacją składa się z koncentrycznych cylindrów, pomiędzy które wpływa paliwo. Zostaje ono tam zapalone. Dochodzi do gwałtownego uwolnienia ciepła w postaci fali uderzeniowej. Jest to silny impuls gazów o wysokiej temperaturze i ciśnieniu, które poruszają się szybciej od prędkości dźwięku. O ile w konwencjonalnych silnikach stosowane są liczne podzespoły odpowiedzialne za kierowanie i kontrolowanie reakcji spalania, to nie są one potrzebne w silnikach RDRE. Napędzana procesem spalania fala uderzeniowa w sposób naturalny przemieszcza się w komorze, zapalając kolejne porcje paliwa. To bardzo gwałtowny proces, w wyniku którego można uzyskać większy ciąg, zużywając przy tym mniej paliwa.
NASA poinformowała właśnie o wynikach ubiegłorocznego testu silnika RDRE. Został on uruchomiony kilkanaście razy i pracował w sumie przez 10 minut. Celem testu było sprawdzenie, czy poszczególne podzespoły są w stanie wytrzymać przez dłuższy czas ekstremalne temperatury i ciśnienie.
Podczas pracy z pełną mocą silnik przez niemal minutę wygenerował ciąg o mocy ok. 18 kN, czyli ok. 400 razy mniejszy niż ciąg F-1, najpotężniejszego w historii jednokomorowego silnika na paliwo płynne, który napędzał Saturna V, najpotężniejszą rakietę w dziejach. Średnie ciśnienie w komorze spalania wyniosło 4,2 MPa. To najwyższa wartość ciśnienia osiągnięta w tego typu silniku.
Udane testy RDRE pozwalają NASA myśleć o wykorzystaniu tej technologii w przyszłości. Obecnie inżynierowie pracują nad RDRE wielokrotnego użytku, który wygeneruje ciąg 44,5 kN. Posłuży on do testów porównujących tego typu konstrukcję z obecnie używanymi silnikami.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Podczas otwierania butelki szampana powstaje naddźwiękowa fala uderzeniowa, informują naukowcy z Francji i Indii. Symulacje z zakresu dynamiki płynów pozwoliły zbadać tworzenie się, ewolucję i rozpraszanie fali uderzeniowej wydobywającej się z szyjki butelki. Badania nad otwieraniem szampana mogą dostarczyć cennych informacji nt. naddźwiękowego przepływu cieczy zarówno w rakietach kosmicznych, pociskach balistycznych czy turbinach wiatrowych. Znajdą one zastosowania przy produkcji elektroniki, jak i budowie pojazdów podwodnych.
Chcieliśmy lepiej zrozumieć niespodziewane zjawisko naddźwiękowego przepływu, który ma miejsce podczas otwierania szampana. Mamy nadzieję, że nasze symulacje dostarczą pożytecznych wskazówek naukowcom, którzy mogą potraktować butelkę szampana jak mini laboratorium, mówi współautor badań, Robert Georges z Université de Rennes 1.
W czasie początkowej fazy odkorkowywania, mieszanina gazów jest częściowo blokowana przez korek, co zapobiega osiągnięciu prędkości dźwięku przez buzujący pod korkiem płyn. W miarę, jak korek opuszcza szyjkę, mieszanina gazów uchodzi z butelki promieniście, równoważąc swoje ciśnienie za pomocą kolejnych fal uderzeniowych. Fale te tworzą wzór diamentów Macha, wzorców typowych dla silników odrzutowych. Symetryczny kształt butelki powoduje, że uchodzący z naddźwiękową prędkością gaz ma kształt korony. W końcu ciśnienie spada na tyle, że prędkość ulatniającego się gazu jest mniejsza niż prędkość dźwięku.
Teraz naukowcy chcą zbadać inne parametry wpływające na cały proces, takie jak temperatura, objętość, średnica szyjki oraz procesy fizykochemiczne towarzyszące odkorkowywaniu butelki szampana. Chcieliby na przykład sprawdzić, jak tworzenie się kryształów lodu, spowodowane nagłym spadkiem temperatury rozprężających się gazów, wpływa na ich naddźwiękowy przepływ.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na University of Bath powstał niezwykle lekki materiał, który może wyciszyć silniki samolotów i znacząco poprawić komfort pasażerów. To najlżejszy ze znanych materiałów izolujących, który może zmniejszyć hałas generowany przez silniki startujących odrzutowców do poziomu zbliżonego do hałasu generowanego przez... suszarkę do włosów.
Metr sześcienny aerożelu z tlenku grafenu i poli(alkoholu winylowego) waży zaledwie 2,1 kilograma, co czyni go najlżejszym kiedykolwiek wyprodukowanym materiałem izolującym. Jego twórcy zapewniają, że może on obniżyć hałas generowany przez silniki samolotu ze 105 do 89 decybeli, zatem do poziomu przeciętnej suszarki do włosów. Jednocześnie niemal nie wpływałby na wagę całego samolotu.
Obecnie naukowcy z Materials and Structures Centre (MAST) na Bath University pracują nad optymalizacją swojego aerożelu. Chcą, by lepiej rozpraszał on ciepło, co zmniejszy zużycie paliwa i poprawi bezpieczeństwo.
"To niezwykle interesujący materiał, który może znaleźć wiele zastosowań. Początkowo w przemyśle lotniczym i kosmicznym, ale potencjalnie również w samochodowym, transporcie morskim czy budownictwie", mówi profesor Michele Meo, który stał na czele zespołu badawczego. "Udało się nam wyprodukować tak lekki materiał dzięki połączeniu ciekłych tlenku grafenu i polimeru, które formowane są tak, by zamknąć wewnątrz bąble powietrza. Możemy porównać tę technikę z ubijaniem bezy. Otrzymujemy ciało stałe, zawierające dużo powietrza".
Twórcy nowego materiału oceniają, że może on trafić na rynek już za 18 miesięcy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Korzyści z rosnącej sprzedaży samochodów elektrycznych są całkowicie niwelowane przez rosnącą popularność SUV-ów. Spadek sprzedaży ropy naftowej, spowodowany coraz większym zapotrzebowaniem na pojazdy elektryczne został całkowicie wyrównany przez wzrost konsumpcji ropy przez SUV-y, informują Laura Cozzi i Apostolos Petropoulos z Międzynarodowej Agencji Energii w Paryżu.
W 2020 roku zużycie ropy naftowej przez samochody, w tym SUV-y, spadło o 10%, czyli o ponad 1,8 miliona baryłek dziennie. Większość tego spadku związana jest z pandemią, która spowodowała, iż ludzie mniej podróżują. Jest to zatem najprawdopodobniej zjawisko tymczasowe. Jednak za niewielką część spadku, około 40 000 baryłek dziennie, odpowiada wzrost liczby samochodów elektrycznych, szacują Cozzi i Patropoulos. W roku 2020 sprzedaż pojazdów elektrycznych gwałtownie wzrosła, mówi Patropoulos. Niestety, wzrosła też sprzedaż SUV-ów. I ile całkowita sprzedaż samochodów spadła, to aż 42% kupujących wybrało SUV-a, zatem sprzedano o 3% więcej tego typu pojazdów niż w roku 2019.
Obecnie po drogach całego świata jeździ ponad 280 milionów SUV-ów. Jeszcze w 2010 roku było ich mniej niż 50 milionów. Przeciętny SUV spala o 20% więcej paliwa niż samochód osobowy średniej wielkości. Popularność SUV-ów spowodowała, że korzyści z zakupów samochodów elektrycznych zostały całkowicie zniwelowane.
SUV-y przyczyniają się do utrzymania poziomu zanieczyszczeń emitowanych przez samochody. W latach 2010–2020 globalna emisja CO2 z samochodów osobowych zmniejszyła się o 350 milionów ton. Główne przyczyny to zwiększona wydajność silników oraz rosnąca popularność samochodów elektrycznych. Jednocześnie jednak emisja z SUV-ów wzrosła o ponad 500 milionów ton.
I to właśnie rosnąca popularność SUV-ów powoduje, że pomimo coraz lepszych silników i coraz popularniejszych samochodów elektrycznych, ogólna emisja z samochodów osobowych nie spada.
Przyczyną popularności tego typu samochodów jest postrzeganie ich jako symboli statusu materialnego, rosnąca zamożność ludności w takich krajach jak Indie czy RPA oraz fakt, że SUV-y są bardzo intensywnie reklamowane przez koncerny samochodowe. Zapewniają one bowiem wyższy margines zysku niż standardowe pojazdy.
Na rynku zaczęły pojawiać się też elektryczne SUV-y. Być może z czasem bardziej się one rozpowszechnią. Jednak trzeba pamiętać, że nawet wówczas większy i cięższy samochód wymaga zużycia większej ilości surowców do produkcji, a elektryczny SUV zużywa około 15% więcej energii niż mniejszy elektryczny samochód.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Rewolucyjny silnik Sabre z powodzeniem przeszedł niezwykle ważny test. Firma Reaction Engines poinformowała, że jego kluczowy element, wymiennik ciepła zapobiegający przegrzaniu silnika, przetestowano w warunkach odpowiadających lotowi z prędkością 5 Mach. Silnik Sabre samoloty, które mają latać z kilkukrotną prędkością dźwięku. Zbliżamy się do momentu, w którym lot z Londynu do Sydney będzie trwał tyle, co film wyświetlany na pokładzie samolotu. Albo i do momentu, w którym spędzimy dwutygodniowe wakacje na orbicie.
Sabre to hybryda silnika odrzutowego, rakietowego i strumieniowego. Do osiągnięcia prędkości około 6 machów i wysokości 26 kilometrów ma on działać jak silnik odrzutowy. Następnie wloty powietrza zostaną zamknięte, a Sabre przełączy się w tryb silnika rakietowego.
Twórca silnika, firma Reaction Engines, ma nadzieję, że trafi on do samolotów wojskowych, pasażerskich i pojazdów kosmicznych wielokrotnego użytku. W firmę zainwestowały już takie przedsiębiorstwa jak BAE Systems, Rolls-Royca i boeing. Otrzymała ona też wsparcie finansowe od brytyjskiego rządu, amerykańskiej DARPA i Europejskiej Agencji Kosmicznej.
Ostatnie testy wykazały, że wymiennik ciepła Sabre jest najbardziej wydajnym urządzeniem tego typu, jakie kiedykolwiek zastosowano w silniku rakietowym. Już przed kilku laty okazało się, że w ciągu mniej niż 1/100 sekundy jest on w stanie schłodzić powietrze z 1000 do -150 stopni Celsjusza bez pojawiania się szronu. Teraz widzimy, że pracuje przy olbrzymich prędkościach. Mach 5 to ponaddwukrotnie większa prędkość niż osiągał Concorde i o ponad 50% wiięcej niż najszybszy samolot odrzutowy świata, SR-71 Blackbird, wyjaśniają przedstawiciele Reaction Engines.
Udany test wymiennika ciepła oznacza, że w ciągu najbliższych 12-18 miesięcy będzie można przetestować cały silnik. Reaction Engines kończy właśnie budowę nowego zakładu w Westcott na południu Anglii, gdzie będą prowadzone kolejne testy.
Inżynierowie zaczęli też zarysowywać projekty pierwszych testów silnika Sabre w powietrzu. Miałyby się one odbyć w przyszłej dekadzie. Specjaliści zastanawiają się nad wykorzystaniem drona lub istniejącego modelu samolotu.
Tymczasem brytyjskie Ministerstwo Obrony chce na bazie Sabre już teraz udoskonalać silniki istniejących samolotów odrzutowych. W lipcu bieżącego roku dowódca brytyjskich sił powietrznych stwierdził, że technologia schładzania powietrza w Sabre może zostać zastosowana w silnikach EJ-200 napędzających myśliwce Typhoon.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.