Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nowe kierunki badań w Wielkim Zderzaczu Hadronów

Rekomendowane odpowiedzi

Badacze z całego świata będą po raz drugi debatować nad przyszłością nowego kierunku badań w Wielkim Zderzaczu Hadronów pod Genewą, który ma zaowocować szczegółowymi pomiarami wysokoenegetycznych neutrin oraz otworzy nowe drogi poszukiwań ciemnej materii. Współautorem dyskutowanej propozycji nowego eksperymentu FLArE jest dr Sebastian Trojanowski z AstroCeNT i Zakładu Fizyki Teoretycznej NCBJ.

Planowane ponowne uruchomienie Wielkiego Zderzacza Hadronów jest jednym z najbardziej wyczekiwanych wydarzeń w świecie fizyki. Przy tej okazji, zostanie również zainicjowany nowy kierunek badań w LHC, obejmujący pomiary wysokoenergetycznych neutrin oraz poszukiwania śladów nowej fizyki w kierunku wzdłuż osi wiązki zderzenia protonów. Ten nietypowy sposób wykorzystania zderzacza został zaproponowany przez autorów koncepcji detektora FASER (odnośniki w uzupełnieniu). Jednym z jego pomysłodawców był dr Sebastian Trojanowski związany z ośrodkiem badawczym AstroCeNT przy Centrum Astronomicznym im. Mikołaja Kopernika PAN oraz z Narodowym Centrum Badań Jądrowych.

Choć eksperyment FASER ma dopiero zacząć zbierać dane w najbliższym czasie, to już zadajemy sobie pytanie, jak rozwinąć ten pomysł do jeszcze ambitniejszego projektu w dalszej przyszłości – mówi dr Trojanowski. Dyskusje na ten temat zgromadzą w dniach 27-28 maja (w formule zdalnej) około 100 badaczy z całego świata zajmujących się fizyką cząstek elementarnych. Na spotkaniu inżynierowie z CERN zaprezentują również wstępne plany dotyczące budowy nowego laboratorium podziemnego, które mogłoby pomieścić większą liczbę eksperymentów skupionych wzdłuż osi wiązki zderzenia. Jest to projekt długofalowy, który ma na celu maksymalizację potencjału badawczego obecnego zderzacza, który powinien służyć nauce jeszcze wiele lat.

Wśród kilku eksperymentów proponowanych do umieszczenia w nowym laboratorium jest m.in. bezpośredni spadkobierca detektora FASER. Eksperyment, nazwany roboczo FASER 2, znacząco poszerzyłby potencjał odkrywczy obecnego detektora. Choć ani obecny, ani proponowany przyszły eksperyment nie dają możliwości bezpośredniej obserwacji ciemnej materii, to umożliwiają one poszukiwanie postulowanych teoretycznie niestabilnych cząstek, które mogą pośredniczyć w jej oddziaływaniach.

O krok dalej idą autorzy kwietniowego artykułu opublikowanego w czasopiśmie Physical Review D, prof. Brian Batell z Uniwersytetu w Pittsburgu w USA, prof. Jonathan Feng z Uniwersytetu Kalifornijskiego w Irvine oraz dr Trojanowski. Proponują oni sposób na bezpośrednią obserwację lekkich cząstek ciemnej materii w nowym laboratorium. W tym celu sugerują umieszczenie tam nowego detektora, nazwanego FLArE (ang. Forward Liquid Argon Experiment), wykorzystującego technologię ciekło-argonowej komory projekcji czasowej oraz wstępny sygnał w postaci błysku (ang. flare) scyntylacyjnego. Detektor taki byłby nowym narzędziem do bezpośredniego poszukiwania cząstek ciemnej materii poprzez badanie ich oddziaływań przy bardzo wysokich energiach oraz przy laboratoryjnie kontrolowanym strumieniu takich cząstek. Jest to metoda wysoce komplementarna względem obecnych podziemnych eksperymentów poszukujących cząstek pochodzących z kosmosu lub produkowanych przez promieniowanie kosmiczne – argumentuje dr Trojanowski.

Pomysł na nowy detektor FLArE został błyskawicznie włączony we wstępne plany inżynieryjne nowego laboratorium oraz w dyskusje eksperymentalne, również te dotyczące przyszłych badań neutrin w LHC. Czas pokaże, czy projekt ten będzie kolejnym sukcesem na miarę FASERa, czy też zostanie zastąpiony jeszcze lepszym rozwiązaniem – komentuje dr Trojanowski. Jedno jest pewne: fizycy nie próżnują i nie ustają w wysiłkach w celu lepszego poznania praw rządzących naszym światem.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Doroczna konferencja fizyczna Recontres de Moriond przynosi kolejne – po łamaniu symetrii CP przez bariony – fascynujące informacje. Naukowcy pracujący przy eksperymencie CMS w CERN-ie donieśli o zaobserwowaniu w danych z Wielkiego Zderzacza Hadronów sygnałów, które mogą świadczyć o zaobserwowaniu najmniejszej cząstki złożonej. Uzyskane wyniki wskazują, że kwarki wysokie – najbardziej masywne i najkrócej istniejące ze wszystkich cząstek elementarnych – mogą na niezwykle krótką chwilę tworzyć parę z swoim odpowiednikiem w antymaterii (antykwarkiem wysokim) i tworzyć hipotetyczny mezon o nazwie toponium.
      Model Standardowy, chociaż sprawdza się od dziesięcioleci, ma niedociągnięcia. Naukowcy próbują je wyjaśnić, poszukując dodatkowych, nieznanych obecnie, bozonów Higgsa. Właściwości takich – wciąż hipotetycznych – cząstek, mają być dość proste. Zakłada się, że powinny one oddziaływać z fermionami z siłą proporcjonalną do masy fermionu, a teorie postulujące istnienie dodatkowych bozonów Higgsa mówią, że powinny one łączyć się bardziej masywnymi kwarkami. Stąd też uwaga naukowców skupiona jest na kwarku wysokim. Ponadto, jeśli takie dodatkowe bozony Higgsa miałyby masę większą od 345 GeV – masa znanego nam bozonu Higgsa to 125 GeV – i rozpadałyby się na pary kwark wysoki-antykwark, to w Wielkim Zderzaczu Hadronów powinien pojawić się nadmiar sygnałów świadczących o produkcji takich par.
      W eksperymencie CMS zauważono taki nadmiar, ale – co szczególnie przyciągnęło uwagę naukowców – zauważono go przy energiach stanowiących dolną granicę zakresu poszukiwań. To skłoniło fizyków pracujących przy CMS do wysunięcia hipotezy, że nadmiar ten pochodzi od kwarków wysokich i antykwarków wysokich znajdujących się w stanie quasi-związanym zwanym toponium.
      Gdy rozpoczynaliśmy analizy, w ogólnie nie braliśmy pod uwagę możliwości zauważenia toponium. W analizie wykorzystaliśmy uproszczony model toponium. Hipoteza ta jest niezwykle ekscytująca, gdyż nie spodziewaliśmy się, że LHC zarejestruje toponium, mówi koordynator prac, Andreas Meyer z DESY (Niemiecki Synchrotron Elektronowy).
      Co prawda nie można wykluczyć innych wyjaśnień zaobserwowanych zjawisk, ale z dotychczasowych badań wynika, że toponium w sposób wystarczający wyjaśnia zaobserwowany nadmiar sygnałów. Uzyskany przez nas przekrój czynny (prawdopodobieństwo) dla naszej uproszczonej hipotezy wynosi 8,8 pb (pikobarnów) ± 15%. Można powiedzieć, że to znacząco powyżej 5 sigma [5 sigma to wartość odchyleń standardowych, powyżej której można ogłosić odkrycie - red.], dodaje Meyer.
      Jeśli uda się potwierdzić istnienie toponium, będzie to kolejne poznane kwarkonium, czyli stan utworzony przez kwarka i jego antykwark. Obecnie znamy czarmonium – to kwark powabny (charm) i jego antykwark – oraz bottomonium, czyli kwark spodni (bottom) i antykwark. Czarmonium zostało odkryte w SLAC w 1974 roku, a bottomium znaleziono trzy lata później w Fermilabie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Spotkanie, o którym poinformowaliśmy, nigdy nie miało miejsca. To żart primaaprilisowy. :)
      Ostatnie działania administracji prezydenta Trumpa wywołały spory niepokój w amerykańskim środowisku naukowym. Biały Dom, chcąc rozpoznać i załagodzić sytuację, zorganizował nieformalne spotkanie prezydenta z przedstawicielami Narodowej Fundacji Nauki (NSF). To niezależna agenda rządu federalnego, której zadaniem jest wspieranie badań i edukacji na wszystkich pozamedycznych polach nauki i inżynierii. Z budżetem sięgającym 10 miliardów dolarów NSF finansuje około 25% badań podstawowych wspieranych z budżetu federalnego.
      Z nieoficjalnych doniesień wynika, że spotkanie przebiegało w bardzo dobrej atmosferze, prezydent wypytywał o największe wyzwania i potrzeby amerykańskiej nauki. Ku zdziwieniu zebranych miał też ze spokojem i zrozumieniem przyjmować – lekką co prawda i kulturalną – krytykę swoich dotychczasowych działań. Jeden z biorących w nim udział naukowców zdradził redakcji PNAS (Proceedings of the National Academy of Sciences), pod warunkiem zachowania anonimowości, że rozmowa z gospodarzem Białego Domu przebiegała znacznie lepiej, niż sobie wyobrażał. Wydawało się, że prezydent rozumie obawy naukowców i rzeczywiście się nimi przejmuje.
      Sytuacja uległa zmianie, gdy Donald Trump zapytał o amerykańską fizykę. Naukowcy powiedzieli mu m.in. o amerykańskim udziale w Wielkim Zderzaczu Hadronów (LHC) i w innych międzynarodowych projektach związanych z akceleratorami. Prezydent spytał o amerykańskie akceleratory i dowiedział się, że USA nie posiadają równie dużego co LHC. Gdy zaczął wypytywać o szczegóły, uczeni wyjaśnili mu, że budowa takiego akceleratora trwa wiele lat i jest niezwykle kosztowna. Wówczas Donald Trump powiedział coś, co niemal przyprawiło mnie o zawał, stwierdził rozmówca PNAS. Prezydent stwierdził, że USA powinny wycofać się z Wielkiego Zderzacza Hadronów, zaoszczędzone pieniądze przeznaczyć na budowę amerykańskiego akceleratora i... zabrać amerykańskie części z LHC. Dodał, że zleci administracji odpowiednie działania i analizy prawne, a jeśli są jakieś umowy, to Stany Zjednoczone je wypowiedzą.
      Naukowcy próbowali wyperswadować mu ten pomysł, jednak Donald Trump upierał się, że pieniądze amerykańskich podatników powinny być przeznaczane na rozwój amerykańskiej nauki i zapewniać naukowcom miejsca pracy w USA, a nie za granicą. Spotkanie, jak łatwo się domyślić, nie zakończyło się w równie dobrej atmosferze, w jakiej się toczyło.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Japoński akcelerator cząstek SuperKEKB pobił światowy rekord świetlności. Pracujący przy nim naukowcy obiecują, że to dopiero początek. W ciągu najbliższych lat chcą zwiększyć świetlność urządzenia aż 40-krotnie, co ma pozwolić zarówno na odkrycie ciemnej materii, jak i wyjście z fizyką poza Model Standardowy. Mamy nadzieję, że akcelerator pozwoli nam wykryć ciemną materię – o ile ona istnieje – i badać ją w niedostępny obecnie sposób, mówi profesor Kay Kinoshita z University of Cincinnati.
      Świetlność akceleratora to liczba kolizji, która w nim zachodzi. Podczas tych zderzeń powstają nowe cząstki. Im więc więcej zderzeń, tym więcej cząstek, więcej danych i większa szansa n a zarejestrowanie czegoś nowego.
      SuperKEKB zderza pozytony i elektrony przyspieszane w 3-kilometrowym tunelu. Akcelerator został uruchomiony w 2018 roku i naukowcy ciągle pracują nad zwiększaniem jego jasności. Profesor Alan Schwartz i jego studenci z University of Cincinnati zaprojektowali i zbudowali jeden z detektorów akceleratora. To krok milowy w projektowaniu akceleratorów. SuperKEKB wykorzystuje architekturę tzw. „nano strumieni”. W technice tej strumienie cząstek są ściskane wzdłuż osi pionowej, dzięki czemu są bardzo cienkie, wyjaśnia Schwartz. To pierwszy na świecie akcelerator, który korzysta z tej techniki.
      Ze względu na rozmiary cząstek, szansa, że dojdzie do zderzenia, jest niewielka. Im bardziej ściśnięty strumień, tym większe zagęszczenie cząstek i tym większe prawdopodobieństwo zderzeń. Obecnie wysokość wiązki w punkcie zderzenia wynosi 220 nanometrów. W przyszłości ma to być zaledwie 50 nanometrów, czyli około 1/1000 grubości ludzkiego włosa.
      Profesor Kay Kinoshita poświęciła całą swoją naukową karierę zagadnieniu zwiększania świetlności akceleratorów. Uczona pracuje nad tym zagadnieniem od 1982 roku. To bardzo interesujące, gdyż jest bardzo wymagające. Wiesz, że robisz coś, czego nikt nigdy nie zrobił, mówi.
      Poprzednik SuperKEKB, akcelerator KEKB, który działał w latach 1999–2010 w KEK (Organizacja Badań nad Akceleratorami Wysokich Energii), również był światowym rekordzistą. Urządzenie pracowało ze świetlnością 2,11x1034 cm-2s-1. Dopiero w 2018 roku rekord ten został pobity przez Wielki Zderzacz Hadronów, który osiągnął świetlność 2,14x1034 cm-2s-1. Rekord LHC nie utrzymał się długo, dnia 15 czerwca 2020 roku SuperKEKB osiągnął świetlność 2,22x1034 cm-2s-1. Już tydzień później, 21 czerwca naukowcy poinformowali o nowym rekordzie. Teraz SuperKEKB pracuje ze świetlnością wynoszącą 2,40x1034 cm-2s-1.
      W ciągu najbliższych lat świetlność SuperKEKB ma wzrosnąć 40-krotnie. Docelowo ma ona wynieść 8x1035 cm-2s-1.
      Sukces SuperKEKB to sukces międzynarodowej współpracy. Nadprzewodzące magnesy, które ostatecznie skupiają strumienie cząstek zostały zbudowane we współpracy z amerykańskimi Brookhaven National Laboratory oraz Fermi National Accelerator Laboratory. Systemy monitorowania kolizji to dzieło SLAC National Accelerator Laboratory i University of Hawaii. Naukowcy ze Szwajcarii (CERN), Francji (IJCLab), Chin (IHEP) i USA (SLAC) biorą udział w pracach i badaniach, w których wykorzystywany jest akcelerator. Wykorzystujący diament system monitorowania promieniowania oraz system przerywania wiązki to dzieło włoskich Narodowego Instytutu Fizyki Jądrowej oraz Uniwersytetu w Trieście, a system monitorowania jasności powstał w Rosji.
      Wiązki elektronów i pozytonów rozpędzane w SuperKEKB zderzają się w centrum detektora Belle II, który opisywaliśmy przed 2 laty. To niezwykłe urządzenie zostało zbudowane przez grupę 1000 fizyków i inżynierów ze 119 uczelni z 26 krajów świata. I to właśnie wewnątrz Belle II naukowcy mają nadzieję znaleźć ciemną materię i rozpocząć badania jej właściwości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badacze z Wielkiego Zderzacza Hadronów, pracujący przy eksperymencie LHCb poinformowali o zaobserwowaniu hipertrytona oraz antyhipertrytona. Ślady ponad 100 tych rzadkich hiperjąder znaleziono podczas analizy danych ze zderzeń protonów prowadzonych w latach 2016–2018. Rejestrowanie takich jąder to wisienka na torcie osiągnięć LHC, gdyż instrument nie został zaprojektowany do ich poszukiwania.
      Hiperjądro to takie jądro atomowe, w którym jeden z nukleonów (protonów lub neutronów), został zastąpiony przez hiperon, czyli barion zawierający kwark dziwny, ale nie zawierający ani kwarku b, ani kwarku powabnego. Czas życia hipertrytona i jego antycząstki wynosi około 240 pikosekund (ps) czyli 240 bilionowych części sekundy. Jak krótki to czas, niech świadczy fakt, że w tym czasie światło jest w stanie przebyć około 7 centymetrów.
      Zarejestrowany hipertryton jest zbudowany z protonu, neutronu i najlżejszego z hiperonów, hiperona Λ0 (lambda 0), a antyhipertryton zawiera ich antycząstki. Jako, że hipertryton i antyhipertryton zawierają hiperon, ich badaniem zainteresowana jest astrofizyka, gdyż tworzenie się hiperonów z kwarkiem dziwnym jest najbardziej korzystne energetycznie w wewnętrznych warstwach jądra gwiazd. Zatem poznanie sposobu powstawania hiperonów pozwoli na lepsze modelowanie jąder gwiazd.
      Równie interesujące dla badaczy kosmosu jest jeden z produktów rozpadu hipertrytona i jego antycząstki. Jest nim hel-3 – i, oczywiście, antyhel-3 – pierwiastek obecny w kosmosie, który może zostać wykorzystany do badania ciemnej materii.
      Z jednej strony jądra i antyjądra powstają w wyniku zderzeń materii międzygwiezdnej z promieniowaniem kosmicznym, z drugiej, mogą – przynajmniej teoretycznie – powstawać podczas anihilacji materii i antymaterii. Jeśli chcemy poznać dokładną liczbę jąder i antyjąder, które z kosmosu docierają do Ziemi, potrzebujemy precyzyjnych informacji na temat ich powstawania i anihilacji.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...