Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Pierwszy eksperymentalny dowód na dwoistą naturę elektronu
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Po raz pierwszy udało się zmierzyć spin elektronu w materiale. Osiągnięcie uczonych z Uniwersytetów w Bolonii, Wenecji, Mediolanie, Würzburgu oraz University of St. Andrews, Boston College i University of Santa Barbara może zrewolucjonizować sposób badania i wykorzystania kwantowych materiałów w takich dziedzinach jak biomedycyna, energia odnawialna czy komputery kwantowe. Pomiar spinu w kontekście topologii materiału, w którym był mierzony, był możliwy dzięki wykorzystaniu promieniowania synchrotronowego oraz nowoczesnym technikom modelowania zachowania materii.
Profesor Domenico di Sante z Uniwersytetu w Bolonii wyjaśnia: Na zachowanie elektronów w materiałach mają wpływ pewne właściwości kwantowe, determinujące ich spin w materiale, w którym się znajdują. Tak jak na tor ruchu światła we wszechświecie ma wpływ obecność gwiazd, ciemnej materii czy czarnych dziur, które zaginają czasoprzestrzeń.
Właściwości elektronu znamy od dawna, jednak dotychczas nikt nie bezpośrednio nie zmierzył „topologicznego spinu” elektronu. Uczeni z Włoch, Niemiec, Wielkiej Brytanii i USA wykorzystali efekt znany jako dichroizm kołowy. Zjawisko to polega na różnej absorpcji przez substancje światła spolaryzowanego kołowo prawo- i lewoskrętnie. W swoich badaniach skupili się na metalach kagome. To materiały, w których atomy tworzą – znany z tradycyjnego japońskiego koszykarstwa kagome – wzór składający się z sieci trójkątów o wspólnych wierzchołkach. Ta nietypowa geometria atomów powoduje, że elektrony zachowują się w takim materiale w sposób nietypowy, co pozwala badać niezwykłe zjawiska kwantowe. Metale kagome służą m.in. do badań nad nadprzewodnictwem wysokotemperaturowym. Pierwsze eksperymenty z nimi przeprowadzono w USA w 2018 roku.
Teraz dwuwarstwowe metale kagome XV6Sn6 – gdzie X oznacza pierwiastek ziem rzadkich, tutaj były to terb, skand i holm – posłużyły do badania topologicznego spinu elektronu. Było to możliwe dzięki połączeniu eksperymentu z analizą teoretyczną. Teoretycy przeprowadzili najpierw złożone symulacje kwantowe na potężnych superkomputerach i poinstruowali eksperymentatorów, w którym miejscu materiału powinni mierzyć dichroizm kołowy, wyjaśnia Di Sante.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcom po raz pierwszy udało się zaprezentować przełącznik wykonany z pojedynczej molekuły fullerenu. Dzięki precyzyjnie dostrojonemu laserowi międzynarodowy zespół uczonych był w stanie wykorzystać molekułę fullerenu do zmiany drogi elektronu w przewidywalny sposób. Przełącznik, w zależności od impulsów lasera, działał od 3 do 6 rzędów wielkości szybciej niż przełączniki wykorzystywane obecnie w układach scalonych.
Dzięki fullerenom mogą zatem powstać komputery znacznie szybsze niż to, co można osiągnąć za pomocą współczesnej elektroniki. Można je będzie wykorzystać też do obrazowania medycznego o niedostępnej obecnie rozdzielczości.
Wiele dziesięcioleci temu fizycy odkryli, że w obecności pól elektrycznych oraz światła molekuły emitują elektrony. Współautor najnowszych badań, Hirofumi Yanagisawa w Uniwersytetu Tokijskiego wraz z zespołem, najpierw stworzył hipotezę dotyczącej emisji elektronów przez wzbudzone fullereny w zależności od rodzaju wzbudzającego je impulsu laserowego. Następnie międzynarodowa grupa naukowa dowiodła jej słuszności.
Za pomocą krótkiego impulsu czerwonego lasera uzyskaliśmy kontrolę nad sposobem kierowania przez molekułę nadchodzącego elektronu. W zależności od impulsu, elektron może pozostać na swoim kursie, lub też zmienić trasę w przewidywalny sposób. [...] Sądzimy, że możemy osiągnąć tutaj milion razy krótszy czas przełączania niż za pomocą klasycznego tranzystora. To zaś może przełożyć się na zwiększenie wydajności komputerów. Jednak równie ważne byłoby dostrojenia lasera tak, by molekuła fullerenu mogła działać jednocześnie jak wiele przełączników. Uzyskalibyśmy w ten sposób odpowiednik wielu tranzystorów w pojedynczej molekule. To zwiększyłoby złożoność systemu bez zwiększania jego fizycznych rozmiarów, wyjaśnia Yanagisawa.
Fullereny to cząsteczki składające się z parzystej liczby atomów węgla, tworzące zamkniętą, pustą w środku bryłę. O ich potencjalnym zastosowaniu w informatyce pisaliśmy już przed 15 laty. Jak się okazuje, możliwe jest precyzyjne manipulowanie orientacją fullerenów za pomocą precyzyjnych ultrakrótkich impulsów laserowych, decydując w ten sposób, jak dojdzie do emisji elektronu. To technika podobna do tego, jak w mikroskopii fotoelektronów (PEEM) uzyskuje się obrazy. Jednak rozdzielczość PEEM sięga maksymalnie około 10 nanometrów, czyli 10 miliardowych części metra. Fullerenowy przełącznik pozwoliłby na osiągnięcie rozdzielczości około 300 pikometrów, czyli 300 bilionowych części metra, dodaje Yanagisawa.
Autorzy badań dodają, że jeśli udałoby się spowodować, by pojedyncza molekuła fullerenu działała jak wiele przełączników jednocześnie, to niewielka sieć takich molekuł przeprowadzałaby obliczenia znacznie szybciej niż dzisiejsze procesory. Jednak do pokonania jest wiele przeszkód, jak np. odpowiednie zminiaturyzowanie laserów. Tak czy inaczej mogą minąć lata, zanim fullerenowe przełączniki trafią do układów scalonych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Królewskim Muzeum Sztuk Pięknych (Koninklijk Museum voor Schone Kunsten Antwerpen, KMSKA) w Antwerpii od 1 lutego trwa miesięczny performance „The Author is Present”. Na jednej z sal ustawiono boks, w którym siedzi pisarka Saskia De Coster pracująca nad swoją kolejną książką.
Zapowiadając miesięczny pobyt w muzeum w mediach społecznościowych, De Coster wspomniała o największym wyzwaniu w swojej pisarskiej karierze. Projekt zakłada, że Saskia będzie zarówno pracować, jak i spać w KMSKA. Na zamieszczonym przez KMSKA na YouTube'ie filmie widać, jak kobieta przygotowuje się do eksperymentu. Przechadza się po muzeum i wreszcie nadmuchuje materac, na którym rozkłada śpiwór. Potem światła gasną...
Pisząca po flamandzku autorka ma ukończyć swoje najnowsze dzieło w przeszklonym boksie o powierzchni 12 metrów kwadratowych. De Coster liczy, że będą ją inspirować zwiedzający i wiszące na ścianach dzieła sztuki.
Nietrudno zauważyć, obmyślona z Inge Jooris akcja nawiązuje do znanego performance'u Mariny Abramović o tym samym tytule; 13 lat temu był on częścią retrospektywnej wystawy artystki w nowojorskim Museum of Modern Art. W godzinach otwarcia instytucji Abramović tkwiła nieruchomo na krześle. Naprzeciw niej znajdowało się puste krzesło, na którym zasiadały kolejne osoby. Marina patrzyła na nie w milczeniu. Każdy mógł spędzić z performerką dowolną ilość czasu. Na stronie internetowej MoMA prowadzono transmisję na żywo. Performance stał się głównym tematem dokumentu Matthew Akersa „Marina Abramović: Artystka obecna”. W sumie artystka spędziła w bezruchu aż ok. 700 godzin. W odróżnieniu od Saskii, nie spała jednak w muzeum.
Powieść, nad którą De Coster pracuje, dotyczy kwestii nieosiągalności, straty i poszukiwania więzi. Twórczy proces pisania zawsze ludzi fascynował, był jednak w dużej mierze nieuchwytny i niedostępny, bo odbywał się poza zasięgiem ich wzroku. Zwykle to pisarz obserwuje, tym razem - na miesiąc - role się odwracają.
Akcja Saskii to swoisty powrót do korzeni, bo jako dziecko miała w zwyczaju pisać schowana w małej ogrodowej szopie. Pisarka zabrała ze sobą laptop i 28 książek. Podczas eksperymentu może obserwować ludzi odwiedzających muzeum, ale nie będzie się z nimi porozumiewać. Chodzi o pokazanie ewolucji procesu pisania, gdy pisarz całkowicie odcina się od współczesnego świata mediów i jakiejkolwiek formy komunikacji - wyjaśniono na stronie KMSKA.
Urodzona w 1976 r. Saskia De Coster opublikowała swoją pierwszą powieść pt. „Vrije Val” (Swobodne spadanie) w 2002 r. Od tej pory wydała kilkanaście książek, w tym bestsellerową „Wij en Ik” (My i ja). Publikuje także w prasie. Oprócz tego jest artystką wizualną.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Hybryda materii i antymaterii – atom helu, w którym elektron zastąpiono antyprotonem – wykazuje niespodziewaną reakcję na światło lasera, gdy zostaje zanurzony w nadciekłym helu, informują naukowcy z projektu ASACUSA na CERN. Uczeni zauważają, że ich odkrycie może stać się podstawą dla rozpoczęcia różnego rodzaju badań.
Nasze eksperymenty sugerują, że hybrydowe atomy helu składające się z materii i antymaterii mogą zostać użyte do eksperymentów spoza fizyki cząstek, szczególnie zaś w badaniach fizyki materii skondensowanej, a może nawet w eksperymentach astrofizycznych, mówi rzecznik prasowy ASACUSA, Masaki Hori. Prawdopodobnie wykonaliśmy pierwszy krok w kierunku wykorzystania antyprotonów w badaniach materii skondensowanej.
Naukowcy pracujący przy projekcie ASACUSA wykorzystują hybrydowe atomy helu do badania masy antyprotonu i porównywania jej z masą protonu. W takich hybrydowych atomach wokół jądra krąży antyproton i elektron, zamiast dwóch elektronów, wchodzących w skład zwykłego atomu helu. Atomy te uzyskuje się wprowadzając antyprotony do schłodzonego gazowego helu o niskiej gęstości.
Dzięki niskiej temperaturze oraz gęstości możliwe jest łatwiejsze badanie reakcji hybrydowych atomów na światło lasera. Przy bardziej gęstym gazie i wyższych temperaturach linie spektralne przejścia antyprotonu lub elektronu pomiędzy poziomami energetycznymi są zbyt szerokie, przez co ich badanie jest bardzo trudne lub niemożliwe. A w ten właśnie sposób naukowcy próbują określić stosunek masy antyprotonu do elektronu.
Dlatego też uczeni byli zaskoczeni, gdy okazało się, że w ciekłym helu, który ma znacznie większą gęstość niż hel w stanie gazowym, doszło do spadku szerokości linii spektralnych antyprotonu. Co więcej, gdy obniżyli temperaturę ciekłego helu do poziomu, poniżej której stał się on nadciekły, okazało się, że linie spektralne uległy dalszemu gwałtownemu zwężeniu.
To było niespodziewane. Badana w paśmie optycznym reakcja hybrydowego atomu helu w nadciekłym helu jest wyraźnie różna od reakcji tego samego hybrydowego atomu w gazowym helu o wysokiej gęstości, mówi Anna Sótér ze Politechniki Federalnej w Zurichu (ETH Zurich).
Uczeni sądzą, że zaskakujące zachowanie jest powiązane z promieniem orbitali, czyli odległością pomiędzy jądrem atomu a elektronami. W przeciwieństwie do wielu standardowych atomów, promień orbitali w hybrydowym atomie ulega jedynie niewielkim zmianom pod wpływem światła lasera. Dzięki temu laser nie wpływa na linie spektralne, nawet gdy atom jest zanurzony w ciekłym helu. To jednak, jak podkreślają autorzy badań, jedynie hipoteza, którą trzeba zweryfikować.
Zaskakujące odkrycie niesie ze sobą liczne konsekwencje. Po pierwsze daje nadzieję na stworzenie innych hybrydowych atomów helu, jak np. pionowe (od cząstki pion) atomy helu zbudowane z różnych cząstek antymaterii i cząstek egzotycznych. Posłużyły by one do bardziej szczegółowych pomiarów masy cząstek. Po drugie, znaczące zwężenie linii spektralnych w nadciekłym helu sugeruje, że hybrydowe atomy helu mogą zostać użyte do badania materii nadciekłej i innych skondensowanych faz materii. W końcu zaś, tak wąskie linie spektralne mogą zostać wykorzystane do poszukiwania antyprotonów i antydeuteronów pochodzących z przestrzeni kosmicznej. Badania takie można by prowadzić na orbicie okołoziemskiej lub w laboratoriach umieszczonych w balonach latających na dużych wysokościach. Jednak zanim się one rozpoczną, konieczne będzie pokonanie licznych przeszkód technicznych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Podstawą nadprzewodnictwa jest łączenie się elektronów w pary. Rodzi się jednak pytanie, czy mogą wobec tego łączyć się też w czwórki. Profesor Egor Babaev przez niemal 20 lat szukał sposobu ma tworzenie nowego stanu materii, elektronowych czworaczków. Teraz w końcu mu się udało. Pracujący pod jego kierunkiem fizycy ze szwedzkiego Królewskiego Instytutu Technologii (KTH – Kungliga Tekniska högskolan) donieśli na łamach Nature Physics, że udało im się uzyskać stan przewidziany przez Babaeva przed 17 laty.
Uczony w 2004 roku opublikował artykuł, w którym teoretycznie opisał elektronowe czworaczki, a w roku 2012 opisał, w jaki sposób je uzyskać je w bazującym na żelazie materiale Ba1−xKxFe2As2.
Łączenie się elektronów w pary pozwala na pojawienie się nadprzewodnictwa, stanu, w którym ładunek elektryczny nie napotyka na przeszkody. O tym, że elektrony mogą się łączyć, a nie odpychać, dowiedzieliśmy się z teorii opracowanej przez Coopera, Bardeena i Schrieffera, którzy zostali za nią uhonorowani Nagrodą Nobla w 1972 roku.
To właśnie te tzw. pary Coopera są nośnikami ładunku w nadprzewodnikach. W normalnych warunkach dwa elektrony, które mają przecież te same ładunki, silnie się odpychają. Jednak w niskich temperaturach w kryształach łączą się w luźne pary. O parach takich wiedzieliśmy od dawna. Jednak idea łączenia się fermionów (a elektrony są fermionami) w czwórki została przez naukowców zaakceptowana dopiero niedawno. Profesor Babaev wyjaśnia, że aby doszło do zaistnienia związku czterech fermionów musi pojawić się coś, co zapobiegnie tworzeniu się par oraz ich przepływie bez oporu, a jednocześnie umożliwi tworzenie czterofermionowego kondensatu.
Problem w tym, że teoria BCS, mikroskopowa teoria nadprzewodnictwa zwana też teorią Bardeena-Coopera-Shrieffera, nie pozwala na tworzenie fermionowych czworaczków. Gdy więc współpracujący z Babaevem eksperymentator Vadim Grinenko z Technische Universtät Dresden trafił przed 3 laty na ślady wskazujące na istnienie takiego stanu materii, naukowcy musieli zmierzyć się z powszechnie akceptowaną teorią.
Przez kolejne trzy lata uczeni prowadzili liczne eksperymenty i badania, mające potwierdzić odkrycie. Babaev mówi, że kluczową obserwacją jest spostrzeżenie, że czterofermionowe kondensaty spontanicznie łamią parzystość operacji odwrócenia czasu. Jest to matematyczna operacja, która pozwala zmienić znak współrzędnej czasowej na ujemny, dzięki czemu można opisać zjawisko tak, jakby czas biegł do tyłu lub cały ruch biegł w przeciwnym kierunku. Gdy użyjemy takiego zabiegu matematycznego, to wszystkie podstawowe prawa fizyki nadal działają. Działają też nadprzewodniki. Innymi słowy, jeśli obliczamy teoretycznie właściwości typowego nadprzewodnika i odwrócimy strzałkę czasu, nadal jest on takim samym nadprzewodnikiem.
Jednak w przypadku czterofermionowego kondensatu po odwróceniu strzałki czasu pojawia się inny stan. Prawdopodobnie minie wiele lat, zanim go w pełni zrozumiemy. Nasze eksperymenty prowadzą do postawienia wielu nowych pytań, ujawniają istnienie wielu niezwykłych właściwości powiązanych z reakcją na temperaturę, pole magnetyczne i ultradźwięki, dodaje Babaev.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.